
 
 
 
 

SERVER SIDE WALL-HACK PREVENTION VIA 

HARDWARE-ACCELERATED RAY-TRACING 
 

Author: Baktash Abdollah-shamshir-saz 

Created: 21-12-2020 

Updated: 5-11-2023 

                                                                              Version: 1.25 

                                              US Provisional Patents: 63/135,354 

                                                   63/151,289 

                                                           US Utility Patent: 11/771,997 (US20220219086A1) 

 

 

 

 

 

 

 

 

 

https://patents.google.com/patent/US20220219086A1/en?oq=US20220219086


CONTENTS 
0. Glossary of Known Terms ......................................................................................................................... 3 

1. Introduction .............................................................................................................................................. 8 

2. Background ............................................................................................................................................... 9 

3. Solution description ................................................................................................................................ 10 

3.1 High level objective ........................................................................................................................... 11 

3.2 Toolkit for low resolution virtual frusta ............................................................................................ 12 

3.2.1 Bounds stretching ...................................................................................................................... 13 

3.2.2 Selective super-sampling ........................................................................................................... 13 

3.2.3 Force-casting geometry ............................................................................................................. 14 

3.3 Visibility registration ......................................................................................................................... 14 

3.4 The need for forward projection ...................................................................................................... 16 

3.4.1 High-speed Scenarios ................................................................................................................. 16 

3.4.2 Threaded-mode ......................................................................................................................... 17 

3.4.3 Forward projection as a solution ............................................................................................... 19 

3.4.4 Handling ultra-high-latencies via specialized look-a-heads ....................................................... 20 

3.5 Path-Tracing for Future Pipelines ..................................................................................................... 23 

4. Other considerations .............................................................................................................................. 24 

4.1 Thin-client leaning ............................................................................................................................. 24 

4.2 Audio cues ......................................................................................................................................... 25 

4.3 Radar and screen-based pins ............................................................................................................ 25 

4.4 Non-visible physical cues .................................................................................................................. 25 

4.5 Impact on lag-switching .................................................................................................................... 25 

4.6 Trust of user-supplied frustum information ..................................................................................... 26 

4.7 Using simplified geometry ................................................................................................................ 26 

4.8 Player-associated geometry (i.e. vehicles, projectiles) ..................................................................... 26 

4.9 Dynamic geometry ............................................................................................................................ 26 

5. Flowchart ................................................................................................................................................ 27 

5.1. Subroutines ...................................................................................................................................... 29 

5.1.1. Simple algorithm ....................................................................................................................... 30 

5.1.2. Path-tracing algorithm with armatures .................................................................................... 31 

5.1.3. Common Sub-routines .............................................................................................................. 33 

6. References .............................................................................................................................................. 34 

 



0. GLOSSARY OF KNOWN TERMS 
 

Graphics Processing Unit (GPU): An electronic hardware unit designed to provide visuals for 

computers.  It can either be a separate piece of hardware installable on a motherboard, integrated 

into a motherboard or provided alongside a CPU on the same chip. Modern GPUs are backed by 

massively parallel processors capable of intensive mathematical computations. 

General Purpose Graphics Processing Unit (GPGPU): Utilizing a GPU’s massively parallel 

processors for the purpose of performing processing that may not be visuals-related. 

Ray-tracing: a computer graphics technique whereby a line segment is tested against an 

amalgamation of 3D triangles in space in order to find an intersection. 

Hardware accelerated ray-tracing: ray-tracing accelerated via specialized hardware. Ray-tracing 

is otherwise known to be a computationally intensive process (i.e. when done using software in 

either a parallel or serial fashion.) 

Path-tracing: a technique that utilizes multiple back-to-back and stochastic applications of ray-

tracing to simulate a travelling photon. It starts casting a ray of light from the viewer and aims to 

end it at a light source. This technique and its modern variants are used to generate photorealistic 

imagery in movies and, more recently, in video games. 

Transport Path (Path-tracing): the complete path that a photon travels from a light source to the 

eye. 

Throughput (Path-tracing): the carried amount of light as the path of a photon is being 

discovered during the path-tracing process. 

Next Event Estimation (Path-tracing): Next Event Estimation (dubbed NEE) is a technique in path 

tracing whereby a ray is extended from a hit point towards a light source intentionally to increase 

the chances of interaction with a light source. This is commonly done in graphical applications to 

reduce noise especially when light sources are small (and thus harder to hit) or exist as a single 

point in space. 

Ray payload (Ray-tracing): a small data store that contains information about a sequence of rays 

traversing the scenery. This data unit has emerged in modern day GPU-based hardware accelerated 

ray-tracing as a necessary means of accumulating information along a transport path and is 

recommended to be kept small in order to avoid unnecessary memory and bandwidth pressure on 

the hardware. 

Shader Binding Table or SBT (Ray-tracing): A table that contains sets of code used for ray-

tracing. Each set usually contains code to execute when all geometry is missed, any piece of 

geometry is hit or the un-ignored geometry closest to the ray origin is found. A ray-tracing 

application may have one or more sets entered into such a table to represent different kinds of rays 



each with custom logic. This term has evolved from modern-day GPU-based hardware-accelerated 

ray-tracing hardware-software ecosystems. 

Acceleration Structure (Ray-tracing): a top-down structure used to hierarchically group 

geometric primitives such as triangles, distance-fields or any other shape representations. It is used 

to accelerate traversal and access of such primitives and shapes resulting from intersection queries 

defined by rays (two points defined in three-dimensional space). A ray intersection query will 

traverse down the tree, performing rough and quick intersection tests on higher-level nodes. If 

these rough tests do not yield an intersection, all children branching down from those nodes are 

ignored. Thus, significantly increasing the speed with which primitives or shapes of interest are 

obtained. 

Bottom-level Acceleration Structure or BLAS (Ray-tracing): an acceleration structure that 

simply represents a small chunk of triangles or shapes arranged together on a top-down structure. 

This is yet another term evolved from modern-day GPU-based hardware-accelerated ray-tracing 

hardware-software ecosystems. 

Top-level Acceleration Structure or TLAS: an arrangement of BLASs on yet another acceleration 

structure representing an entire scene. This two-level design allows one to compose different 

scenes by mixing and matching different BLASs together. Much like BLAS, this term has also 

evolved from modern-day GPU-based hardware-accelerated ray-tracing hardware-software 

ecosystems. 

Pseudo Random Number Generator (PRNG): A computer subroutine that generates a seemingly 

random sequence of numbers. 

Russian-roulette (Path-tracing): a mode of decision making in path-tracing whereby the 

continued existence of a ray is determined via a dice-roll. 

Diffuse (material type): A type of material characterized by a very rough surface that has 

microstructures pointing in every direction. Unfinished wood is considered diffuse. This type of 

surface reflects incoming light to every direction. 

Indirect Diffuse (Lighting): Light visible on a diffuse surface reflected from another surface. For 

example, a red table cloth reflecting direct sunlight on drywall. The red light reflected on drywall 

would be considered indirect diffuse lighting. 

Ambient Occlusion or AO: Darkness visible in crevices due to increased difficulty for light to 

escape those geometric conditions. 

Screen-space AO: A method for approximating AO by relying on geometric data available alongside 

color information on screen. This method is inaccurate as it cannot account for AO appearing from 

objects that are not immediately visible or out of view. It is normally used due to its memory 

requirements being solely tied to screen resolution. 

Global AO: Any method that approximates AO via taking into account all relevant scene geometry. 

This approach does not suffer from the aforementioned issues with screen-space AO. 



Voxel Accelerated AO or VXAO: A global AO method using brick-like (or ‘voxelized’) 

representations of a scene. 

Game-client: the machine used by a player to play the game. 

Game-server: an authoritative computer that exists as a broker of information between game 

clients in online video games. Video games that utilize the client-server model necessitate such 

machines. Games that utilize peer-to-peer knowledge distribution do not have traditional game 

servers. Due to this, they are also more susceptible to cheating and abuse. 

Wall-hacking: a colloquial term that has emerged to describe a particular kind of cheating in online 

first person and third person shooter video games. This kind of cheating enables a user to be able to 

observe enemy combatants through otherwise obscuring geometry, thereby providing the user 

with otherwise inaccessible knowledge and an unfair advantage over the opposing team. 

Aim-botting: a colloquial term emerged to describe a type of cheating in online shooter games 

whereby the computer assists the user to effortlessly aim at weak points of enemy combatants as 

described by game logic. These weak points could for example be the enemy’s head or any other 

part known to be susceptible to increased damage from virtual hostile munitions. 

DRM: Digital Rights Management. Software intended to prevent unauthorized copying and use of 

copyrighted material. 

Banning (online games): forbidding a player from participating in an online game either 

temporarily or permanently. 

Root-kit: software that operates at operating system level by posing as a system driver. When 

operating at this level, it is able to hide its presence by the virtue of pre-installing before known 

counter-measures. With this advantage it simply changes the operation of the system at any desired 

level with full impunity. 

Player armature: a skeletal shape representing player poses at any point during a gameplay 

session. 

Potentially Visible Set or PVS: a grouping of objects or individual primitives (triangles) within 

objects whereby elements of the set are potentially –but not guaranteed to be – visible. 

Bounding Box: a virtual box used to represent all geometry contained within. Mostly used for a 

single entity or player. They tend to contain a lot of empty space. 

Occlusion Culling: determining whether a bounding box or a complete piece of geometry is visible 

from an observer’s vantage point given all – or the most important – obstructions. 

Player Frustum: a virtual pyramid stretched out from the vantage point of an observer that defines 

the observer’s field of view. 

Graphics API: an application programming interface used to render computer graphics. 



Headless Instance (Graphics API): an instance of a graphics API used to render only to a piece of 

memory instead of a display output (i.e. monitor). Such an instance is useful for GPGPU processing. 

Texture: a single or a collection of 2D, 3D or cube images used in graphics APIs to store color 

information. 

Sampler: commonly used to refer to an abstraction in graphics APIs around textures. Every texture 

can and usually does come with an accompanying sampler to filter the texture upon color retrieval 

in order to improve appearance.  Samplers commonly have hardware units in video cards in order 

to speed up retrieval, filtering and provisioning of color output. 

Material: a collection of samplers used to define the appearance of a surface. These samplers can 

define different aspects of the material such as roughness, emissivity, specularity amount, albedo 

color, specular color and other attributes of the material. They can also be procedural (i.e. defined 

by code). However, for the purposes of this application we are interested in how they distribute 

reflected light overall. 

Pre-Pass (Computer Graphics): using computer rendering algorithms to produce results not yet 

ready for display. In fact, such results are then fed as input to another rendering algorithm (i.e. 

another ‘pass’) to produce final results or imagery. 

Instance (Geometry): a piece of geometry (i.e. a collection of 3D triangles) usually with a single 

material. However, this is not a hard requirement as some game engines may support geometry 

instances with more than one material. 

Centroid (Geometry): the geometric center (or ‘mean’) of a set of points in three dimensions. 

Map: a colloquial term used to describe the environment in which players engage with each other, 

like a traditional city map. 

Thread (code): computer instructions that run simultaneous to other instructions in a computer 

program. 

Thread-safe: interacting with a thread in an unexpected manner results in corruption of its data, 

potential crashes or unwanted side effects. Operations dubbed thread-safe exist to prevent the 

aforementioned scenarios. 

Temporal Super-sampling (a.k.a. Temporal Anti-Aliasing or TAA): a technique used in 

rendering to obtain more geometry and lighting information not available at a fixed resolution by 

perturbing/jittering initial rendering conditions (i.e. the frustum) and accumulating results over 

time. In its most prevalent form the acquired limited history of results is averaged to provide anti-

aliased output. 

Selective Super-sampling: a technique used in rendering to obtain more detail by casting more 

rays only when a certain selective criterion is met. 

Boolean flag: a flag that can be either zero or one. The name Boolean refers to George Boole. 



Bitwise operations: math operations involving bits (i.e. ‘zeroes and ones’). For example a bitwise 

AND operation checks to see if there are common bits set to one in two different binary numbers, 

yielding a non-zero number in that case and yielding zero otherwise. 

Ray/Object Masks (Ray Tracing APIs): a mechanism to allow rays to ignore or include certain 

objects based on bitwise AND operations involving binary numbers (dubbed ‘masks’) assigned to 

objects and rays alike. If a bitwise AND operation between an object and a ray’s mask yields a non-

zero number the intersection test occurs. Otherwise the intersection test is ignored. 

Simplification (Geometry): Reducing the triangle count on a piece of geometry while roughly 

preserving its shape. Usually used in computer graphics to reduce rendering time for objects at a 

distance where reduction in geometric complexity is visually unnoticeable. 

Dot Product (Algebra): an algebraic operation involving two vectors (i.e. ‘directions’). It is 

commonly used to get a measure of the angle between the two. 

Matrix (Algebra): a two-dimensional table containing numeric values. 

Square Matrix (Algebra): a matrix where the number of rows and columns match. 

Symmetric Matrix (Algebra): a matrix where the swapping the columns with rows does not yield 

different cell values. 

Low Discrepancy Sequence: a sequence of pseudorandom numbers that provide even coverage of 

the range from which they’re picked from. This is in contrast to high discrepancy sequences which 

may have too many similar results clumped together over a certain period of evaluations. An 

example of low discrepancy sequences is the Halton sequence. 

Blue noise: in the domain of noise, blue noise is low discrepancy compared to white noise. 

Therefore, it can be used for random sampling of data when even coverage over any given range is 

desired. 

Orthonormal basis (in 3D space): three vectors in 3D Cartesian space that are all at right angles 

to each other and with a length of exactly one. A viewer’s look vector (pointing towards where the 

viewer is looking), up vector (pointing out of the viewer’s head towards the sky) and side vector 

(pointing along either the left or right shoulder of the viewer) can construct such a basis. 

Principal axes (in 3D space): the three axes determining X, Y and Z directions in 3 dimensions. An 

orthonormal basis would contain such axes albeit oriented for that basis. 

Binary Space Partitioning or BSP:  This is an algorithm that recursively splits the world and 

arranges the splits on a tree-like data structure until certain conditions are met. A BSP-tree is a 

special type of acceleration structure concerned with splitting the world in half on every node. 

BSP Leaves: the bottom-most nodes on a BSP tree. They are at times used for PVS filtering as they 

can be wide enough to envelope a considerable amount of space. 



Flood-fill: a class of algorithms that explore unexplored neighbours until a stop criterion is met. 

Potentially visible sets can be constructed via a flood-fill approach by recursively exploring open 

connected areas. 

Traceroute (computer networking): a networking utility that measures the latency of every hop 

(i.e. stop) along a networking path to a certain host. 

Re-orthonormalization: a previously orthonormal basis modified to re-satisfy the condition. 

1. INTRODUCTION 
 

Cheating in video games is one of the most problematic issues facing video game developers 

and publishers alike. A survey by Irdeto[1] revealed a staggering 37% of respondents admitting to 

cheating. It further revealed that 76% of respondents stressed the importance of preventing 

cheating in online games. The CEO of Irdeto further stressed that not countering these issues will 

lead to lower engagement and shrinking revenues which is a commonly reported[2] phenomenon. 

In a webinar hosted by GamesBeat, Riot Games revealed that cheaters roughly cause 33% of 

affected players to discontinue playing an online game[3]. 

 In this document we provide a solution to prevent one of the most subtle types of cheating: 

the wallhack. The reason wallhacks are notoriously difficult to detect are their very nature: the 

player while knowing where enemy combatants are, may intentionally not look their way to 

deceive spectators observing gameplay. This provides for incredible difficulty in definitively 

proving whether the observed player was indeed engaging in cheating. Such inquires themselves 

result in paranoia amongst other players and reduce trust in the fairness of the game itself. 

 This especially becomes a problem in the world of e-Sports where large prize pools are at 

stake and fairness is incredibly important. A notable scandal is that of the 2014 banning of 

professional competitors Hovik Tovmassian (Team Titan), Simon Beck (Team Alternate) and 

Gordon Giry (Team Epsilon) which made headlines[4]. They were caught and banned mere days 

before the Dreamhack Winter 2014 CS:GO championship tournament where a prize pool of 

$250,000 was at stake[4]. It is important to note that this prize pool is by no means the largest of 

such pools as there are competitions with much larger prize pools such as the $1M at stake for B 

Site Inc.’s Flashpoint 2 championships[5]. Prize pools for CS:GO alone have totalled more than 

$100M in a breakdown provided by Valve Corporation[6]. 

 

 

 

 

https://www.forbes.com/sites/nelsongranados/2018/04/30/report-cheating-is-becoming-a-big-problem-in-online-gaming/?sh=f613d3676637
https://www.theverge.com/2020/5/6/21246229/pc-gaming-cheating-aimbots-wallhacks-hacking-tools-developer-response-problem
https://www.brighttalk.com/webcast/12339/489903?utm_source=vb&utm_medium=marketing-post&utm_content=-jun-17&utm_campaign=june-29-denuvo-webinar
https://www.ign.com/articles/2014/11/25/csgo-esports-community-shaken-following-revelation-of-cheating
https://www.prnewswire.com/news-releases/1-million-on-the-line-for-flashpoint-2-and-the-largest-csgo-prize-pool-of-2020-301158145.html
https://www.esportznetwork.com/csgo-esports-reaches-100-million-milestone-for-prizes/


2. BACKGROUND 
 

 Many attempts have been made in the past to eliminate or detect not just wall-hacking but 

other forms of online cheating for first/third person shooter video games. In the section we shall 

cover notable attempts. 

 Most anti-cheat software includes technology that runs on client systems. Examples include 

VAC (Valve Anti-Cheat), PunkBusterTM and BattlEyeTM. There are two considerable issues with this. 

Firstly, many consumers feel that these technologies are very invasive as they operate at a 

privileged level to scan the client machine for signatures of known cheat applications. In this sense 

they are comparable to intrusive DRM software (used by the music and film industries) or intrusive 

Anti-virus software. This issue of invasiveness is so bothersome that Blizzard’s anti-cheat solution 

was classified as malware by the EFF[7] at one point. Secondly, cheat applications can indeed be 

released with new signatures or equipped with sophisticated techniques that place them below the 

anti-cheat application at operating system level (by prior analysis of the host anti-cheat software) 

and effectively operate as a root-kit. Detection or removal of such technology at such points 

becomes either incredibly difficult or virtually impossible. State of the art academic proposals such 

as BlackMirror[8] released at the ACM SIGSAC this year propose placing anti-cheat software inside 

Intel’s SGX enclave. In fact, Intel’s patent[9] also proposes executing anti-cheat code in their SGX 

secure execution environment embedded in their CPUs which cooperates with an anti-cheat server 

periodically. SGX has been shown to be vulnerable via multiple vectors[10] and exclusive to Intel 

CPUs only. nVidia’s recent success with running a modern Wolfenstein title on ARM CPUs [11] 

highlights the necessity for a solution that does not rely on vendor specific guarded execution 

environments. Additionally, BlackMirror does not address complex rendering pipelines such as 

Quake II RTX’s and simply defers handling it to future work. Valve’s patent[12] proposes challenges 

that can be run inside virtual execution environments crafted specifically to report false negatives 

in combination with sophisticated heuristics to differentiate real from fake (i.e. ‘no-op’) challenges. 

The patent itself emphasises the fact that its proper operation rests on the client machine not 

having had enough time to develop countermeasures to challenges provided within server-supplied 

‘black boxes’. Given the development history of cheating software, this is a never ending struggle for 

anti-cheat (and more generally DRM) software development. SecureBoot Attestation is slowly 

gaining popularity as a client-side anti-tamper measure. However, its adoption remains largely 

voluntary and low as many clients with older hardware have found it difficult to procure the TPM 

hardware required for its operation. More recently, SecureBoot via TPM 2.0 was dealt a decisive 

blow via the BlackLotus bootkit [13]. Also, without strong session layer security there is no need to 

circumvent TPM2 in order to wall-hack as demonstrated by hardware wall-hacks[14] that examine 

traffic externally and place markers on translucent displays. Even with such a measure, CV/AI-

based hardware aimbots[15] are possible though this is not a focus of ours. Initiatives like Stadia 

have claimed to put an end to cheating[16]. Aside from still being vulnerable to CV/AI-based 

hardware aimbots, their additional input latency[17] introduced by the cloud provider becoming 

the man in the middle makes them unacceptable for competitive gaming. 

http://news.bbc.co.uk/2/hi/technology/4385050.stm
http://news.bbc.co.uk/2/hi/technology/4385050.stm
https://lifeasageek.github.io/papers/seonghyun-blackmirror.pdf
https://www.freepatentsonline.com/y2020/0206635.html
https://en.wikipedia.org/wiki/Software_Guard_Extensions#Attacks
https://blogs.nvidia.com/blog/2021/07/19/geforce-rtx-arm-gdc/
https://patents.google.com/patent/US20060247038A1/en
https://www.welivesecurity.com/2023/03/01/blacklotus-uefi-bootkit-myth-confirmed/
https://www.youtube.com/watch?v=AIbkt6Rl8FA
https://arstechnica.com/gaming/2021/07/cheat-maker-brags-of-computer-vision-auto-aim-that-works-on-any-game/
https://arstechnica.com/gaming/2021/07/cheat-maker-brags-of-computer-vision-auto-aim-that-works-on-any-game/
https://www.pcgamesn.com/stadia/google-stadia-cheating-aimbot
https://www.pcgamesn.com/stadia/google-stadia-cheating-aimbot
https://piunikaweb.com/2022/06/20/nvidia-geforce-now-input-lag-issue-persists-but-there-is-no-fix-in-sight/


 Some technology has emerged as solely server-side anti-cheat technology. Notable 

mentions are that of FairFightTM by GameBlocks, Valve’s machine-learning based anti-aimbot 

solution and Nexon’s machine-learning based anti-wallhack solution. FairFight proposes a 

statistical approach called Algorithmic Analysis of Player Statistics (AAPS)[18] which tracks player 

behaviour and compares it to a wide variety of data. The issue with this approach is that there can 

be false positives as they have been reported by the community at large. This further reduces faith 

in the system amongst players. It is notable that Microsoft[19] and Gamblit Gaming[20]’s patents 

also use player tracking to achieve a similar goal: flagging players that advance too quickly in a 

game. Our system by contrast is deterministic and simply prevents wall-hacks from happening in 

the first place. Valve’s machine-learning based application [21] solely targets aim-botting. While 

they allege that it is achieving high accuracy, this approach unfortunately still provides for 

community frustration as it does not prevent the act but rather addresses it after the fact. Needless 

to say, it does not address the issue that we address in this document whatsoever. Nexon’s 

approach [22] is another interesting solution that randomly takes screenshots (pictures) of the 

player’s screen and uploads them to Nexon servers for analysis. While this may work initially, it 

provides no guarantee that sophisticated root-kit like cheating software won’t circumvent the 

screen-recording mechanism and momentarily turn off wall-hacking when screen-shots are being 

taken. 

 Conceptually speaking, the closest solutions that we have seen to date is that of 

Valorant’s[23] initial server side occlusion culling attempt or works derived from it such as 

CornerCulling[24]. While conceptually similar, our solution is far more accurate with far fewer false 

negatives. This is made possible by: 1) making the hardware necessary to effectively solve the 

problem a pre-condition to running the algorithm and 2) making good use of the hardware by using 

an algorithm built upon extensive ray-tracing research to solve a difficult dynamic visibility 

determination problem at low resolutions for many viewers simultaneously. 

3. SOLUTION DESCRIPTION 
 

Our invention is provided as middleware to server-side developers for integration. It is 

dubbed SauRay. SauRay requires a server environment that has a real-time ray-tracing-capable 

GPU or provides real-time ray-tracing in some reasonable capacity. This includes frameworks such 

as Optix, real-time rendering pipelines that utilize voxels, (signed) distance fields (known as SDFs) 

or other geometric primitives. Even though our current implementation is crafted around modern 

GPU-based hardware-accelerated ray-tracing platforms, our algorithm follows the same procedure 

in the absence of such utilities. 

SauRay starts off by launching a headless instance of a graphics API. This instance will not 

be headless if we are launching SauRay’s debugging view. The API then requests feeding of 

samplers, materials and map geometry instances. It is prudent to cache the range of materials that 

describe the varieties of player appearances at this stage to avoid feeding them later (if the game 

supports player appearances with greatly varying materials). This information is then retained 

https://www.i3d.net/products/hosting/anti-cheat-software/
https://patents.google.com/patent/US20180182208A1/en
https://patents.google.com/patent/US20150194016A1/en
https://www.youtube.com/watch?v=kTiP0zKF9bc
https://www.gdcvault.com/play/1026331/ML-Tutorial-Day-Beating-Wallhacks
https://www.gdcvault.com/play/1026331/ML-Tutorial-Day-Beating-Wallhacks
https://technology.riotgames.com/news/demolishing-wallhacks-valorants-fog-war
https://github.com/87andrewh/CornerCullingSourceEngine


until the next map change. Once fed, our visibility determination system is kicked off on a separate 

thread which uses our proprietary algorithm. This thread then consumes updated player 

information every frame: viewing angles, positions and – potentially – animation states (if armature 

support is present). Using updated player information and previously cached player materials it 

updates its representation of the players inside SauRay. It may also get updated lighting 

information per-frame (if the game supports dynamic lighting that casts shadows). Additionally, 

dynamic changes to environment geometry are retrieved if that is supported as well (such as doors 

openings, elevators moving, obstructions being add or removed etc.). Our algorithm then proceeds 

to conduct the innovations outlined below to determine pair-wise visibility between players. Pair-

wise visibility information is subsequently fed back to game-server code for packet filtering. 

Launching our process in a separate thread is considered our ‘threaded’ mode and is always 

one frame behind the server. Part of our algorithm is crafted around dealing with challenges 

resulting from this (see The need for forward projection). A ‘non-threaded’ mode is also available 

but it will increase server-frame cost and the increase must be examined to avoid violating server 

refresh-rate requirements. Receiving map information can be threaded as well as it would allow the 

game server to perform other tasks simultaneously thus, not increasing the server’s load time with 

that of ours. The most ideal scenario would have both map loading and per frame pre-passes and 

passes all executing on one long-running thread – with proper synchronization of course – to save 

on thread creation and destruction overhead. However, we did not go this far for any of our 

prototypes. 

3.1 HIGH LEVEL OBJECTIVE 
 

 As mentioned, the objective of the algorithm is to filter outgoing traffic to each player based 

on computed pair-wise visibility information between players. This computed information is stored 

into what is called a visibility matrix. The visibility matrix is a square matrix representing the 

visibility of each player against every other player. The diagonal elements of this matrix are of no 

interest to our application. This matrix is not symmetric as one player seeing another does not 

guarantee the reverse. Each cell in this matrix is configured to have a set number of Boolean flags 

representing player visibility in different frames. Our application can track a limited history of 

visibility which can be as low as one frame. Any bits within a cell being one represents a transmit 

decision on the server’s part. Only a cell of all zeroes prevents a packet transmit decision. Figures 1 

and 2 are used to illustrate this matrix. 

 The reason for maintaining this temporal history is that our algorithm employs techniques 

for capturing players with sub-pixel footprints in low resolution virtual frusta that at heart have 

some stochastic element to them (see Selective Super-Sampling). When those techniques are not 

necessary, it still employs a per-ray jitter much like that in Temporal Super-Sampling (with the 

option to choose either blue or white noise). The ideal use case for this jitter is to capture slightly 

visible players at medium range through holes when Force-Casters are forgotten or not placed at 

all. 

 



 

                                        Player ID 0    Player ID 1 

                                            

                                                                    Player ID 2 

                                                              Player ID 3 

                                                                       

                                                                    Figure 1. 

                                        An example scene involving four players 

 

                                             Player 0   Player 1   Player 2  Player 3 

                                     Player 0   

                                     Player 1 

                                     Player 2 

                                     Player 3 

                                                                    Figure 2. 

Visibility matrix associated with Figure 2 at frame zero. 
Temporal memory is limited to three frames in this setup. 

 

3.2 TOOLKIT FOR LOW RESOLUTION VIRTUAL FRUSTA 
 

000 000 100 100 

000 000 100 100 

100 100 000 100 

100 100 000 000 



 Though we are employing graphics hardware to perform visibility determination, our ray 

budget is not infinite: certainly not large enough to account for the collective native client-side 

resolutions of all connected players. Therefore, we need to be prudent on how this budget is spent. 

We have devised three main tools that we use throughout our algorithm to deal with low resolution 

virtual frusta: 

3.2.1 BOUNDS STRETCHING 
 

 With insufficient virtual resolutions it is possible for distant players to become invisible as 

their occupied virtual screen real-estate shrinks. While – as mentioned – our algorithm employs a 

jitter similar to temporal super-sampling to capture sub-pixel detail, it is important to employ 

additional measures as well. A pre-pass is employed in our algorithm to determine how far we can 

stretch player bounding boxes or armatures without exceeding twice their initial volume or 

intersecting the world at large. In practice one can be flexible with the stretched volume limit 

though caution is provided to not exceed that amount by much more than two as it can break the 

algorithm. Information gathered at this stage is used to increase player sizes as the virtual 

resolution shrinks. This is referred to as bounds stretching. 

3.2.2 SELECTIVE SUPER-SAMPLING 
 

Another tool used to counter a lowered resolution is as follows: from every pixel we trace a 

cone starting from the eye with the area of the base being roughly pixel sized. Players with 

bounding spheres that are enveloped by this cone or overlap this cone are deemed sub-pixel. If a 

cone encounters a sub-pixel player, it will launch a configurable number of additional rays – jittered 

differently – to attempt intersecting the sub-pixel player. This is a form of selective super-sampling 

and is done with the sole purpose of increasing the likelihood of visibility for a sub-pixel player. Our 

approach to this test is actually simple and more optimized than using exact cones. We simply 

check if the centroid of the player’s collated armature/geometry is sufficiently far enough from the 

viewer by using a predetermined multiple of its bounding sphere radius shrunk with increasing 

viewer pixel footprint. If the player is sufficiently far enough, we further measure angle difference 

via a dot product between the originally traced ray and a ray pointing to the player’s geometric 

centroid. If this difference falls under a certain threshold increased with increasing viewer pixel 

footprint, the player is deemed sub-pixel and the above mechanism kicks in. In fact, given the above 

approach, players may not actually be sub-pixel for this mechanism to effectuate. This helps with 

visibility determination even before players actually become sub-pixel. We provide an option to use 

low discrepancy sequences such as Halton or blue noise for randomization instead of the default 

white noise. Figure 3 illustrates these two conditions. 

 

 

 



 

 

                 

 

 

Figure 3. 

       Our simplified two-step checking process for sub-pixel players 

The aforementioned process is not exclusively reserved for rays casted from frusta directly. 

Secondary ray cones overlapping very distant players can also increase sample count while 

accounting for intersected surface or luminaire properties especially when the primary ray 

footprint is large. A detailed examination of propagated footprints is covered in [25].  

3.2.3 FORCE-CASTING GEOMETRY 
 

This approach, much like selective super-sampling, is a mechanism to force launching of 

more rays. A force-casting geometry is a piece of geometry that launches additional rays uniformly 

across its surface area when appearing within a player’s frustum. It need not be sufficiently close or 

even visible to do so. Its sole purpose is to cover visibility for tiny holes that may not be caught 

using our usual mechanisms. A straightforward application of this concept simply associates a 

virtual pixel’s ID with that of a limited number of fore-casters present for a scene. The code running 

for that virtual pixel will check to see if the force-caster is within the player’s frustum. If so, it will 

launch as many additional rays necessary to cover its surface area. If the virtual frustum has a 

sufficiently high resolution, more than one virtual pixel can be associated with a force-caster to 

further spread the additional trace load even if that means more virtual pixels have to individually 

check to see if their associated force-casters are in view. 

3.3 VISIBILITY REGISTRATION 
 

 Our algorithm commences by casting rays from every player’s virtual frustum using the 

player’s aspect ratio. This ratio is provided by the server which should theoretically match that of 

the player’s. An under-reported ratio places the player at a disadvantage and an over-reported ratio 

should be rejected server-side and regarded as misinformation. This mechanism prevents players 

from abusing the system. In scenarios where this information is not available, a reasonable 

maximum frustum aspect ratio is used for all players equally (i.e. 16:9). Our algorithm works best 

when player armatures are available server-side. However, if only their bounding boxes are 

available, the rays will register player visibility as they intersect player bounding boxes and 

continue along the ray direction as if these intersections did not occur until encountering a solid 

 

 

 

 



wall. This prevents players’ bounding boxes from hiding each other in the event that they line up 

behind each other visually. To account for limited API guarantees, a map-exclusive ray can be 

launched followed by another potentially shrunk overlapping ray exclusively for player-geometry 

registering each encountered player along the way. This is shown in Figure 4. A reason why the 

server may not replicate player armatures is increasing computational overhead. The registration 

of player visibility is recorded into the visibility matrix described above. 

 

 

 

                 

 

 

 

Figure 4. 

      Player registration for servers providing only bounding boxes 

A replication of the above can also account for secondary rays (i.e. shadows) as long as the 

second overlapping ray is only launched if the map is missed. This ensures that the shadow does 

indeed belong to a player and not an obscuring building or structure behind. 

 

 

 

          Sun 

                 

 

 

 

 

Figure 5. 

      Player registration for a shadow ray blocked by an obscuring wall 

 

 
 

 

 

 

 

 

 

 



3.4 THE NEED FOR FORWARD PROJECTION 
 

 When pre-existing mechanisms for packet filtering – i.e. BSP visibility leaves – are replaced 

with something far less conservative – i.e. ray-tracing – new challenges are introduced that need to 

be addressed. In this section we examine these challenges and how they are resolved in SauRay. 

3.4.1 HIGH-SPEED SCENARIOS 
 

 When traditional means like BSP visibility leaves are used to filter packets, player 

information is exchanged between players within the same visibility leaf which can be quite large 

mostly obviating the need for any extra care related to velocity. However, when information 

transmission is only reduced to instances where one player can see another – if that duration is 

brief – this can be cause challenges. Imagine a scenario where a player’s velocity is extremely high 

and within one server frame, they are going to be past a gap in a wall. In that circumstance, the 

player’s information should be transmitted briefly regardless. This scenario is illustrated in Figure 

6. 

 

                                                 

 

Figure 6. 

A very fast player dashing past a gap will be missed intra server-frame if non-conservative pairwise 
visibility determination is used naïvely 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
  



 The same issue can happen if a viewer is moving too fast past a player hiding in a gap in the 

wall. Figure 7 illustrates this: 

 

 

                                                                                       

 

 

Figure 7. 

A very fast viewer dashing past a gap will be miss a hiding player intra server-frame if non-
conservative pairwise visibility determination is used naïvely 

 

 This issue can be exacerbated as the server refresh-rate goes down. It can be especially 

problematic in games like Quake II where the server refresh-rate is as low as 10 ticks per second. 

3.4.2 THREADED-MODE 
 

 As previously mentioned, one may run our middleware in ‘threaded’ mode in order to save 

on performance. In this mode SauRay does visibility determination for the previous frame in 

parallel as the server evolves the world to arrive at the current frame. This causes SauRay to always 

be a single frame behind the server. This can be problematic especially when the tick-rate is low 

(i.e. Quake II as discussed above) as illustrated in Figures 8 and 9. 

 

 

 

 

 

 

 

  

 

 



 

                

                                 Rejected                 

 

                                                         Server has advanced the viewer  
        to frame t, but will erroneously not  
        transmit based on the algorithm being on 
        frame t-1 

 
 

                                                                    The algorithm has the viewer  
at frame t-1 
 

                 Figure 8. 

A naïve application of threaded visibility determination can cause popping for viewers 

                                       The algorithm   The server has evolved the player 
                                       has the player   to a new position at frame t, but will  
                                       at frame t-1    erroneously not transmit based on the 

algorithm being on frame t-1 (ray miss) 

                                                     

 

 

 

 

Figure 9. 

A naïve application of threaded visibility determination can cause popping of players 

 

 

 

 

 



3.4.3 FORWARD PROJECTION AS A SOLUTION 
 

To combat the aforementioned scenarios, we employ a technique that forward interpolates 

frustum data with a future frustum provided alongside the initial frustum. This future frustum is 

essentially built using the current frustum plus a small amount of time in the future given the 

viewer’s linear and rotational velocities. Our API explicitly requests both frusta along with the 

player ID when the developer is given the opportunity to supply vantage point data. Rays traced for 

the viewer are randomly casted from in between frusta made via linearly interpolating between the 

supplied initial and future frusta using a uniform random variable in the range 0.0 to 1.0 inclusive. 

These in between frusta are re-orthonormalized after interpolation. The user again has the choice 

to either use blue or white noise for the random variable. This way we have a high probability of 

catching an enemy combatant that is not currently visible but will be in the next frame. A diagram is 

provided in Figure 10 to present this concept. 

 

                

                                 Rejected                 

 

                                                         In between frustum 

 

                 Figure 10. 

                                                                   Utilizing interpolated frusta for visibility detection ahead of time. 
 

 

 In that same sense, when the developer is supplying player armature/geometry data to 

SauRay they should take care to overlap several versions of the armature/geometry using 

animation data looking into the next frame. The armature data supplied to our API is essentially 

constructed low polygon count pose geometry that represents the armature. As previously 

mentioned this may not always be available and may simply be replaced with bounding boxes. With 

this approach combatants that are not currently visible by a viewer but will be in the next frame, 

will have their data transmitted ahead of time to avoid popping on the viewer’s screen. Compared 

to Valorant’s bounding box solution described in [23], our solution is far more accurate with far less 

room for both false positives and negatives. Figure 11 aims to visualize this as well. 

 

 
            
 
 
 
 
        Accepted         
            

 



 

                                                     

 

 

 

 

Figure 11. 

Ahead of time visibility detection via overlapping armature geometry 

 In all of our implementations we clip the velocity vector for forward projection against the 

map using a single additional ray cast per player to ensure that final frusta do not end up inside the 

map, thus denying a side-channel attack whereby players can leak information by slamming 

themselves into walls. Also note that this mechanism does not replace lag compensation[26] but is 

rather additive to such a mechanism (i.e. forward projection should happen on top of lag 

compensated player information if the server has this implemented). 

3.4.4 HANDLING ULTRA-HIGH-LATENCIES VIA SPECIALIZED LOOK-A-HEADS 
 

 Once round-trip time exceeds a 100 milliseconds it becomes apparent that further 

measures are required. The reason for this is distinction is what we call the issue of intent. Envision 

a scenario where a player with a ping of a 100 milliseconds is behind a pillar facing an enemy 

combatant. Assuming symmetric bandwidth, it would take 50 milliseconds for the player’s 

movement intent – i.e. to strafe either left or right – to arrive at the server. In other words, we 

cannot predict the intent of the lagging player fast enough in order to forward projection their 

actions into the future for ahead-of-time transmission purposes. 

For such a scenario we introduce specialized look-a-heads. Specialized look-a-heads 

provide the ability to cover very high latencies (as high as 250ms round-trip) by leaking a bit more 

data in order to prevent popping. While this technique reduces our technique’s effectiveness it still 

maintains an edge over PVSs by ensuring that players sufficiently obscured behind walls are still 

not transmitted. Such distinctions are not made via PVS approaches (whether utilizing flood-fills or 

BSP visibility leaves). To ensure that players are not reporting fake latencies, we can perform a 

traceroute operation on their originating IPs. If their second-to-last hop latency is wildly different 

 

https://developer.valvesoftware.com/wiki/Lag_Compensation


from their latency, they are banned for attempting to exploit the algorithm through traffic rate 

manipulation. Since measures like SauRay are practically intended to prevent cheating in high-

stakes low-latency competitive matches this mechanism is not to be overly relied upon other than 

in casual settings. They simply act as a reasonable fall-back in the event that high latencies are 

acceptable (such as using a SauRay enabled server to temporarily host a causal match). 

Competitive-only servers such as those of Valorant that enforce strict player latencies need not rely 

on this section of the algorithm. 

 The actual implementation of a look-a-head involves what we call sub-frusta. We effectively 

divide a frustum into 9 pieces and launch rays from each piece as if it was a frustum all by itself. 

This necessarily shrinks the resolution of each virtual sub-frustum and necessitates the 

mechanisms described in the previous section for low resolutions (i.e. stretch-bounds and selective 

super-sampling). In fact, the bounds-stretched player geometry can be placed in a separate BLAS, 

grouped into a separate TLAS and only served to the lagging player. This denies players with low 

latency an enlarged version of enemy geometry. In the event that enough bits are left over for 

geometry masks, separate stretched BLASes/TLASes become unnecessary and bound-stretched 

geometry can share half of the bitmasks for geometry masks. This was possible for our 

implementation for CS:GO and the resulting geometry masks were solidified into what is 

demonstrated in Figure 12: 

 

 

 

 

Figure 12. 

Our final geometry masks for CS:GO with look-a-heads implemented 

 However, this may not always be possible as these bits maybe used for selectively 

presenting certain obscuring geometry to different players (i.e. players that can ‘see’ through 

certain portals). In that event, the overall solution will still be efficient as the map’s BLASes will be 

shared amongst the two TLASes saving memory and compute. 

The sub-frusta mentioned previously are composed of one that maps to the original frusta 

and another 8 placed at corners surrounding the player’s interpolated eye. The interpolated look 

direction is maintained in all cases. The corners are visualized below in Figure 13 and are aligned to 

world principal axis: 

 

 

 

Team A normal 
geometry (2 bits) 

Team A stretched 
geometry (2 bits) 

Team B normal 
geometry (2 bits) 

Team B stretched 
geometry (2 bits) 



 

 

 

 

 

 

 

Figure 13. 

Approximate arrangement of sub-frusta with the main one in orange 

 Please note that look-a-heads arranged on 8 corners are not in and of themselves novel and 

can be found in prior art such as CornerCulling[24]. However, our approach maintains all the 

benefits of a full frustum – including forward projection and shadow rays –by simply subdividing 

the appropriated space and re-running the same algorithm. This is very unique to our approach. 

Figure 14 is a screen-shot of sub-frusta in action in CS:GO (debug view): 

 

Figure 14. 

Sub-Frusta in action: note the player’s split view of the player above the stairs 

 The look-a-head corners are clipped during the pre-pass phase described above to ensure 

that they do not end up inside walls. Every look-a-head corner also conducts line-of-sight tests to 

every other enemy player in the game. This is necessary as look-a-head corners alone will not be 

able to prevent popping caused by rapid head swings. They can only account for popping resulting 

from lateral movement. This is the only location in the algorithm that we conduct line-of-sight tests. 

Line-of-sight tests occur on three locations along player velocity vectors to account for forward 

projection of enemy positions. Much like force-casters each virtual pixel within a sub-frustum can 

either take on one or more line-of-sight tests dependent on sub-frusta resolutions. For example, in 

our CSGO implementation with a base resolution of 640x640, each sub-frustum will approximately 

  

  

 

  

  

https://github.com/87andrewh/CornerCullingSourceEngine


have a resolution of 213x213. Given that the upper bound on player count is 64, the first 64 virtual 

pixel rows can naturally be associated with line-of-sight tests. Since each virtual row has also 213 

virtual pixels – well above the three suggested above – the first three virtual pixels can trace along 

the combatant’s velocity vector. This is our implemented approach for evenly distributing line-of-

sight tests across virtual pixels. 

3.5 PATH-TRACING FOR FUTURE PIPELINES 
 

 While the simplest use case of our API involves few (usually no more than three) bounces 

per virtual pixel per player (accounting for reflections or AO combined with direct shadows), we 

can provide standard uni-directional path-tracing code that allows further bounces of light based 

on hit material properties making our technique relevant for path traced online multiplayer games 

in the future. Our procedure for visibility flag determination remains the same for further bounces 

effectively. This makes our solution very adaptable for rendering technology that may become fairly 

commonplace in the future. One interesting aspect of our path-tracing approach, adapted to our 

solution, is that diffuse secondary rays (as in diffuse rays cast after the first ray) need not be 

arbitrarily long. They can be as short as two to three times the height of the average player in order 

to capture relevant combatants in the environment. This again provides for natural optimization 

that lends itself well to our approach. In the event that player shadows for nearby light sources are 

visible to clients, NEE secondary rays can be launched for player registration as well. Light sources 

can be picked at random (again using either high or low discrepancy sequences) as well for 

distributing the cost across samples and frames much like the explicit many-light sampling 

approaches found in computer graphics literature. However, all of this is done in service to player 

visibility detection and not rendering visuals. As a result, small dim lights too distant to cast player 

shadows or leave noticeable imprints can be safely ignored. Effects such as smoke, which cause loss 

of perceived light through scattering, can be implemented in our algorithm via passing an 

additional strength value on the ray payload. This value can be diminished as the ray travels 

through absorbing material with per-vertex values describing the absorption factor. When that 

value falls below a certain threshold it can terminate the ray. Alternatively, one could implement 

stochastic termination of the ray based on the vertex absorption factor as well (i.e. ‘Russian-

roulette’ style). In practice, when we had to account for smoke in our CS:GO integration our solution 

turned out to be far simpler (see ‘dynamic geometry’ below). 

Current generation multiplayer games such as CS:GO or regular Quake2 will usually need 1 

or 2 rays per virtual pixel as they do not account for complex light interactions on screen. Modified 

multiplayer games such as Quake2 with RTX do provide us with a window into what could be 

commonplace looking forward. However Quake 2 RTX’s multiplayer component is not popular at 

the moment even though our approach can fully support it. 

A diagram is provided in Figure 15 (with only two path segments) to demonstrate our 

approach to repurposing path-tracing for player visibility determination. 

 



 

 

      Sun                                                                                                                 

                                              

 

                      

 

Figure 15. 

Using path tracing solely for visibility determination in our algorithm 

4. OTHER CONSIDERATIONS 
 

This algorithm by nature places constraints on player information availability. Thus it is 

important to account for that in code related to gameplay and beyond. In this section we explore 

such areas of importance. 

4.1 THIN-CLIENT LEANING 
 

 Our algorithm desires network code design that authorizes the server to do most of the 

game world’s processing. This is not to say that it is not applicable to thick-client models. For thick-

client network code, additional checks must be placed in order to avoid exploits such as spamming 

different frusta across the environment to break the algorithm. Such measures could also avoid 

cheats such as invulnerability, speed-hacking, phantom bullets and false deaths. 

Short 
diffuse 
secondary 
      rays 

     Primary rays 

Long secondary 

rays for sun light 



4.2 AUDIO CUES 
 

 As enemy player information is no longer consistently available, it is important to have a 

strategy for emitting sounds related to unseen players. Either of three strategies is possible: 

 Randomizing the origin of sounds emitted from players. The amount of randomization can 

increase as the origin itself becomes more distant from the listener. This would maintain 

correct sound spatialization while decreasing information leakage with distance. We 

currently employ this for our third party integrations. 

 Sending only stereo channel volumes along with a sound ID. While not stereo-correct this 

could be a bandwidth efficient way of providing audio cues without unveiling audio origin. 

 Live audio streaming. This is an interesting strategy as it provides complete origin 

anonymity while technically being able to emulate spatialization server-side. Games like 

Call of Duty: Warzone use it albeit not for avoiding player information leakage but as a 

means of purposefully leaking nearby combatant radio chatter. It can be repurposed for 

origin obfuscation as well. 

4.3 RADAR AND SCREEN-BASED PINS 
 

 When transmitting such information, one should be careful to only transmit two-

dimensional information and withhold as much data as possible without breaking functionality. 

Pins that project a 3D point onto the screen can simply do this server-side and only transmit the 2D 

screen location when it is in view for example. 

4.4 NON-VISIBLE PHYSICAL CUES 
 

 These should be handled via transmitted server-side signals. An example of this is a player 

walking backwards into another player who is not in view. The server should check for this 

condition server-side and transmit a stop signal to the back-stepping player. We have seen this in 

action in CS:GO which is quite server-authoritative. 

4.5 IMPACT ON LAG-SWITCHING 
 

Lag switching is slightly stunted under this solution compared to other filtering 

mechanisms (i.e. BSP visibility leaves). This is due to there being far fewer opportunities for player 

data to be needlessly available. Thus lag switchers will have far fewer advantageous scenarios 

where withholding outgoing updates will allow them to advance the game state in their favor. 

 

 



4.6 TRUST OF USER-SUPPLIED FRUSTUM INFORMATION 
 

 As hinted in section 4.1, careful scrutiny of user-supplied data is important. User-supplied 

frustum specifications such as vertical field-of-view angles and aspect-ratios are no exception. 

Fortunately, there are no real avenues of abuse in this regard: if a client under-reports these values, 

they are placed at a disadvantage. Values supplied beyond a reasonable range can be rejected 

server-side. In our integrations, such values were not available server-side and thus we assumed 

reasonable maximums of 90 degrees and 16:9 aspect ratios for all y-FOV angles and aspect ratios 

respectively. 

4.7 USING SIMPLIFIED GEOMETRY 
 

Using simplified geometry when available is absolutely desirable. However, it should be 

noted that said geometry should fit in the geometry it represents in order to avoid false negatives 

during gameplay (i.e. players being falsely invisible). In other words, it should not be a conservative 

‘wrapper’ of its associated geometry. Primitives reserved for client-side occlusion culling could be 

great candidates for this purpose. 

4.8 PLAYER-ASSOCIATED GEOMETRY (I.E. VEHICLES, PROJECTILES) 
 

Such geometry should be traced and have their outgoing packets filtered like any player. 

The only difference is that these entities will not be coupled with any ray-tracing frusta. 

4.9 DYNAMIC GEOMETRY 
 

 This is one of the most interesting points of care in our application. Our philosophy with 

respect to dynamic geometry is to err on the side of more visibility (i.e. false positives). For 

example, if a door is signalled to be opened on the server, any obstruction representing it in our 

acceleration structure(s) should be removed before the door begins to open. If it is signalled to be 

closed, the server should wait until the door is completely closed and only then re-introduce the 

obstruction representing the door in the acceleration structure(s). In CS:GO we represent smoke 

plumes as opaque occluders. In game world, they are indeed fully opaque for a period of 15 seconds 

before they slowly become fully transparent (this takes 3 seconds). We simply remove our smoke 

representation at the 15 second mark which both forbids a great deal of information leakage while 

allowing the algorithm to maintain its simplicity and avoid any additional overhead associated with 

computing scattering or performing Russian-roulette. This also keeps it in line with our philosophy 

outlined above as packet transmissions during those 3 seconds occur as if the plumes were not 

there, avoiding any sensation of popping client-side. 

 The outlined philosophy becomes important when considering large moving vehicles or 

debris capable of obstructing player vision. In order to correctly allow such occluders to obstruct 



players without popping, their current and future models can be quickly and roughly sphere 

packed. Spheres that are common to both models can then be isolated and transformed into 

obstructive geometry placed on our acceleration structure(s). 

5. FLOWCHART 
 

The following is our flow chart of the algorithm. The simple route is crafted to handle 

current generation games with few visibility requirements (i.e. CS:GO or Fortnite RTX) and the 

path-tracing route is intended for games with more complex visibility requirements (i.e. Q2 RTX). 

There are similarities and differences in both approaches worth mentioning. 

The simple (AABB) approach requires that rays penetrate player bounding boxes and 

continue. The path-tracing approach does not and indeed bounces rays against players as if they 

were no different from the surrounding environment (i.e. using surface material properties). This 

difference in approach is due to the fact that player AABBs – given their conservative dimensions – 

can occlude other player AABBs whether in a player’s frustum or when casting shadows. This is in 

contrast to player geometries resembling armatures which can be fitted enough to prevent such 

obstructions and thus idea for path-tracing scenarios. This necessitates encoding player IDs on ray 

payloads until the entire transport path reaches a light source in the path-tracing case. 

All rays other than shadow rays (i.e. primary, reflections, global AO etc.) in the simple 

algorithm are un-interested in light sources. This is due to the fact that games such as Fortnite RTX 

or Rise of the Tomb Raider (which features global AO via VXAO) may always have a background 

amount of ambient light, enabling player visibility even in low-light conditions. Thus, reaching a 

light source is not necessary for such rays. Conversely, the path-traced route – whether NEE or 

material scattered rays are concerned – cannot ignore light sources as both independent and 

dependent visibility is achieved due to interactions (or lack thereof) with them. 

AO or reflective mirror rays in the simple case or NEE rays in the path-traced case utilize 

their own custom logic. This necessitates additional entries in the SBT when using modern 

hardware-accelerated ray-tracing APIs; thus, reducing additional burden on ray payloads and 

preventing code from cluttering into a single SBT entry. The path-tracing route does not keep track 

of hit-types precisely because of such a choice. When conducting alternative forms of tracing (i.e. 

against SDFs, voxels, etc.) this also implies custom ray logic in line with this philosophy. When 

tracing against SDFs for example, the AO or NEE query may only have had to come close to a 

present player along its path to initiate a player registration. The minimum necessity is a change in 

visible lighting according to the client-side rendering pipeline. 

In the event where the game falls somewhere in between (such as Quake II RTX where 

client-side rendering is path-traced and the server provides AABBs), it is worthwhile to create 

armatures server-side in the interest of correct visibility determination. 



 

 

 

 

 

 

 



5.1. SUBROUTINES 
 

 

 

 



5.1.1. SIMPLE ALGORITHM 
 

Please note that subroutine AA11 is common with the next section and will be provided further 

below. 

 

 

 

 

 

 

 

 

 

 

 



5.1.2. PATH-TRACING ALGORITHM WITH ARMATURES 
 

 



 

 

 

 

 

 

 

 

 

 



5.1.3. COMMON SUB-ROUTINES 
 

 

 

 

 

 



6. REFERENCES 
 

[1] https://www.forbes.com/sites/nelsongranados/2018/04/30/report-cheating-is-becoming-a-

big-problem-in-online-gaming/?sh=f613d3676637 

[2] https://www.theverge.com/2020/5/6/21246229/pc-gaming-cheating-aimbots-wallhacks-

hacking-tools-developer-response-problem 

[3] 

https://www.brighttalk.com/webcast/12339/489903?utm_source=vb&utm_medium=marketing-

post&utm_content=-jun-17&utm_campaign=june-29-denuvo-webinar 

[4] https://www.ign.com/articles/2014/11/25/csgo-esports-community-shaken-following-

revelation-of-cheating 

[5] https://www.prnewswire.com/news-releases/1-million-on-the-line-for-flashpoint-2-and-the-

largest-csgo-prize-pool-of-2020-301158145.html 

[6] https://www.esportznetwork.com/csgo-esports-reaches-100-million-milestone-for-prizes/ 

[7] http://news.bbc.co.uk/2/hi/technology/4385050.stm 

[8] https://lifeasageek.github.io/papers/seonghyun-blackmirror.pdf 

[9] https://www.freepatentsonline.com/y2020/0206635.html 

[10] https://en.wikipedia.org/wiki/Software_Guard_Extensions#Attacks 

[11] https://blogs.nvidia.com/blog/2021/07/19/geforce-rtx-arm-gdc/ 

[12] https://patents.google.com/patent/US20060247038A1/en 

[13] https://www.welivesecurity.com/2023/03/01/blacklotus-uefi-bootkit-myth-confirmed/ 

[14] https://www.youtube.com/watch?v=AIbkt6Rl8FA 

[15] https://arstechnica.com/gaming/2021/07/cheat-maker-brags-of-computer-vision-auto-aim-

that-works-on-any-game/ 

[16] https://www.pcgamesn.com/stadia/google-stadia-cheating-aimbot 

[17] https://piunikaweb.com/2022/06/20/nvidia-geforce-now-input-lag-issue-persists-but-there-

is-no-fix-in-sight/ 

[18] https://www.i3d.net/products/hosting/anti-cheat-software/ 

[19] https://patents.google.com/patent/US20180182208A1/en 

https://www.forbes.com/sites/nelsongranados/2018/04/30/report-cheating-is-becoming-a-big-problem-in-online-gaming/?sh=f613d3676637
https://www.forbes.com/sites/nelsongranados/2018/04/30/report-cheating-is-becoming-a-big-problem-in-online-gaming/?sh=f613d3676637
https://www.theverge.com/2020/5/6/21246229/pc-gaming-cheating-aimbots-wallhacks-hacking-tools-developer-response-problem
https://www.theverge.com/2020/5/6/21246229/pc-gaming-cheating-aimbots-wallhacks-hacking-tools-developer-response-problem
https://www.brighttalk.com/webcast/12339/489903?utm_source=vb&utm_medium=marketing-post&utm_content=-jun-17&utm_campaign=june-29-denuvo-webinar
https://www.brighttalk.com/webcast/12339/489903?utm_source=vb&utm_medium=marketing-post&utm_content=-jun-17&utm_campaign=june-29-denuvo-webinar
https://www.ign.com/articles/2014/11/25/csgo-esports-community-shaken-following-revelation-of-cheating
https://www.ign.com/articles/2014/11/25/csgo-esports-community-shaken-following-revelation-of-cheating
https://www.prnewswire.com/news-releases/1-million-on-the-line-for-flashpoint-2-and-the-largest-csgo-prize-pool-of-2020-301158145.html
https://www.prnewswire.com/news-releases/1-million-on-the-line-for-flashpoint-2-and-the-largest-csgo-prize-pool-of-2020-301158145.html
https://www.esportznetwork.com/csgo-esports-reaches-100-million-milestone-for-prizes/
http://news.bbc.co.uk/2/hi/technology/4385050.stm
https://lifeasageek.github.io/papers/seonghyun-blackmirror.pdf
https://www.freepatentsonline.com/y2020/0206635.html
https://en.wikipedia.org/wiki/Software_Guard_Extensions#Attacks
https://blogs.nvidia.com/blog/2021/07/19/geforce-rtx-arm-gdc/
https://patents.google.com/patent/US20060247038A1/en
https://www.welivesecurity.com/2023/03/01/blacklotus-uefi-bootkit-myth-confirmed/
https://www.youtube.com/watch?v=AIbkt6Rl8FA
https://arstechnica.com/gaming/2021/07/cheat-maker-brags-of-computer-vision-auto-aim-that-works-on-any-game/
https://arstechnica.com/gaming/2021/07/cheat-maker-brags-of-computer-vision-auto-aim-that-works-on-any-game/
https://www.pcgamesn.com/stadia/google-stadia-cheating-aimbot
https://piunikaweb.com/2022/06/20/nvidia-geforce-now-input-lag-issue-persists-but-there-is-no-fix-in-sight/
https://piunikaweb.com/2022/06/20/nvidia-geforce-now-input-lag-issue-persists-but-there-is-no-fix-in-sight/
https://www.i3d.net/products/hosting/anti-cheat-software/
https://patents.google.com/patent/US20180182208A1/en


[20] https://patents.google.com/patent/US20150194016A1/en 

[21] https://www.youtube.com/watch?v=kTiP0zKF9bc 

[22] https://www.gdcvault.com/play/1026331/ML-Tutorial-Day-Beating-Wallhacks 

[23] https://technology.riotgames.com/news/demolishing-wallhacks-valorants-fog-war 

[24] https://github.com/87andrewh/CornerCullingSourceEngine 

[25] https://cseweb.ucsd.edu/~ravir/belcour.pdf 

[26] https://developer.valvesoftware.com/wiki/Lag_Compensation 

https://patents.google.com/patent/US20150194016A1/en
https://www.youtube.com/watch?v=kTiP0zKF9bc
https://www.gdcvault.com/play/1026331/ML-Tutorial-Day-Beating-Wallhacks
https://technology.riotgames.com/news/demolishing-wallhacks-valorants-fog-war
https://github.com/87andrewh/CornerCullingSourceEngine
https://cseweb.ucsd.edu/~ravir/belcour.pdf
https://developer.valvesoftware.com/wiki/Lag_Compensation

