SRVERSDE WALL-HACKPREVENTION VIA
HARDWAREACCELERATERAY-TRACING

Author: Baktash Abdollahshamshir-saz
Created: 21-12-2020
Updated: 24-3-2023

Version: 1.24
US Provisional Patents: 63/135,354
63/151,289

USNon-provisional Patent (Pending): 17/572,009 (US20220219086A)

https://patents.google.com/patent/US20220219086A1/en?oq=US20220219086

CONTENTS

0. GoSSary Of KNOWN TeIMIS....ciiiiiiiiiiiee ettt e e e e e e e e e e e e aaaaaeaaaaaaeeens 3
O [0 To 1§ [ox 1 o] o PP PP PPPPPPPPN 8
A = 7= (o (o £0] 01T PSPPSR 9
IS To] 1¥i o]0 le [=3Tod 1] 1o o RSP RPP PP 10
3.1 High 1€Vl ODJECHIVE ... e e e e 11
3.2 Toolkit for low resolution VIrtual frUSTAL...........cuvuiiiiieiiiiie e 12
3.2.1 BOUNAS SHEICNINGiiiiiiiiiiiiiei e e e e e e e aaaaas 13
3.2.2 SelecCtivVe SUPEIAMPIIMTcooiiiiiiiiie e e e e e a e e e 13
3.2.3 FOrCEastiNg GEOMEIIY.......uuiiiiieeiiiiiiti it e e e ettt e e e et e e e e s e s st e e e e e e e e e e e e e e annreees 14

3.3 VIisibility regiStratiOn............cooiii i r e 14
3.4 The need for forward ProjeCtiQn........ueeeeiiiiiiiii e 16

G 0 N o 1o] Y o =T=To RS Yot =T g T T 1 T UOTPPP 16

G N I g == Uo (=T oo Yo [PPSR 17
3.4.3 Forward projection as @ SOIULION...........ceiiiiiiiiiiiiiee et 19
3.4.4 Handling ultrdnightlatencies via specialized lo@kheads.............cccccccvviviiiiiiiiieeieeeeeeee, 20

3.5 PathRTracing for FULUre PIPEIINES............oooi it 23
@] g =T ot] 1S 1= | =i] 1SRRI 24
4.1 TRIRCHENT IEANING. ... eeieeeiieiieeieee e e e e e e e e e e e e e e e aaaaaaaaaaaaeas 24
A T [o N o] U =3RS 25
4.3 Radar and SCIeEIBSEA PINS.......coiiiirriiiiie ettt e e e e e e e e e e s e ssbbrrreeeeeaans 25
4.4 NORVISIDIE PYSICAI CUBS.......cc o e s e e 25
4.5 IMPact ON [@GWILCNING eeeees 25
4.6 Trust of usesupplied frustum INfFOrMAtION.............uuuiiiiiiiiiiiiie e, 26
4.7 USING SIMPIIfIEd QEOMEBIIY......eeiiiiiiiiiiiiii et e e et e e e s s eeees 26
4.8 Playerassociated geometry (i.e. vehicles, projectiles).........ccoooiiieiicciciviiiiiiiiiieieeeeeeeee e 26
4.9 DYNAMIC GBOMEBILY ... e i i i i i i i i i it e e e e e e e e e e e eeeeeeaetaaaaaaaaaaaaeaeeaeeassaaaaaaanssnnnnnnes 26
T (01X = T o TP PPSRR 27
LS00 S0 o] 0011 =3P 29
5.1.1. SIMPIE AlgOITNIML.......eeiiiiiiiie e 30
5.1.2. PatHracing algorithm with armatures..............eeeiiiiiiiiiiie s 31
5.1.3. COMMON SHEDULINES.cciiiiiiicit e e e e e e e e e aaaaaaaaaeeeaaeaeaseassaasasaaannnnnnnne 33

(SR LY (ST (=] L0 1TTTRT 34

0. 3_.0SSARY OKNOWNTERMS

Graphics Processing Unit (GPU): An electronic hardware unit designed to provide visuals for
computers. It can either be a separate piece of hardwaiastallable on a mothertoard, integrated
into a motherboard orprovided alongside aCPUon the same chipModern GPUs are backed by
massively parallel processors capable of intensivmathematical computations.

General Purpose Graphics Processing Unit (GPGPU)5 OET EUET C A ' 0580 | AOOEOA
processors for the purpose of performing processinghat may notbe visuals-related.

Ray-tracing: a canputer graphics technique wherdoy a line segment is tested against an
amalgamation of 3D triangles in space inrder to find an intersection.

Hardware accelerated ray -tracing: ray-tracing accelerated via specialized hardware. Rayacing
is otherwise known to be a computationally intensive process (i.e. when done using software in
either aparallel or serial fashion.)

Path-tracing: a technique that utilizesmultiple back-to-backand stochastic applications ofay-
tracing to simulate atravelling photon. It starts casting a ray of lightfrom the viewer andaims to
endit at alight source. This technique and its modern variants are used to generate photorealistic
imagery in moviesand, more recently, invideo games.

Transport Path (Path -tracing): the complete path thata photon travels from a lightsourceto the
eye.

Throughput (Path -tracing): the carried amount of light as thegpath of a photon is being
discovered during thepath-tracing process.

Next Event Estimation (Path -tracing): Next Event Estimation (dubbed NEE) is a technique in path
tracing whereby a ray is extended from a hit point towards a light sourcitentionally to increase

the chances of interaction with a ligh source.This iscommonly donein graphical applicationsto
reduce noise especially when light sources are smd#nd thus harder to hit) or exist as asingle

point in space

Ray payload (Ray-tracing) : a small data store that contains information about aequence of rays
traversing the scenery. This data unit has emerged in modern day GiBblsed hardware accelerated
ray-tracing as a necessary means of accumulating information along a transport path and is
recommended to be kept small in order to avoid unnezssary memory and bandwidth pressure on
the hardware.

Shader Binding Table or SBT (Ray-tracing): A table thatcontains sets of code used for ray
tracing. Each setusually contains code toexecute when all geometry is missedny piece of
geometryis hit or the un-ignored geometry closestto the ray origin is found. A ray-tracing
application may have one or more sets entered into such a table to represent different kinds of say

each with custom logic.This term has evolved from moderaday GPUbased hardware-accelerated
ray-tracing hardware-software ecosystems.

Acceleration Structure (Ray-tracing) : a top-down structure used to hierarchically group

geometric primitives such as triangles, distancdields or any other shape representations. It is used
to accderate traversal and access of such primitives and shapes resulting from intersection queries
defined by rays (two points defined in threedimensional space). A ray intersection query will
traverse down the tree, performing rough and quick intersection tets on higherlevel nodes. If

these rough tests do not yield an intersection, all children branching down from those nodes are
ignored. Thus, significantly increasing the speed with which primitives or shapes of interest are
obtained.

Bottom -level Accelerat ion Structure or BLAS (Ray-tracing) : an acceleration structure that
simply represents a small chunk of triangles or shapes arranged together on a tdpwn structure.
This is yet anotherterm evolved from modernday GPUbased hardwareaccelerated raytracing
hardware-software ecosystems.

Top-level Acceleration Structure or TLAS: an arrangement of BLASs on yet another acceleration
structure representing an entire scene. This twdevel design allows one to compose different
scenes by mixing and matching diffeant BLASs together. Much like BLAS, this term has also
evolved from modernday GPUbased hardwareaccelerated raytracing hardware-software
ecosystems.

Pseudo Random Number Generator (PRNG): A computer subroutine that generates a seemingly
random sequenceof numbers.

Russian-roulette (Path -tracing): amode of decision m&ing in path-tracing whereby the
continued existenceof a rayis determined via a diceroll.

Diffuse (material type): A type ofmaterial characterized by a very roughsurfacethat has
microstructures pointing in every direction. Unfinished woodis considered diffuse This type of
surfacereflects incoming light to every direction.

Indirect Diffuse (Lighting) : Light visible on adiffuse surface reflected from another surface. For
example, a re table cloth reflecting direct sunlight on drywall.The red light reflected on drywall
would be considered indirect diffuse lighting.

Ambient Occlusion or AO: Darkness visible in crevices due to increased difficulty for light to
escape those geometriconditions.

Screen-space AO:A method for approximating AO by relying on geometric data availabkdongside
color information on screen.This method is inaccurate as it cannot account for AO appearing from
objects that arenot immediately visible or out of view. It is normally useddue toits memory
requirements being solely tied to screen resolution

Global AO: Any methodthat approximates AO via taking into accoungll relevant scene geometry.
This approach does not suffefrom the aforementionedissueswith screenspace AO.

Voxel Accelerated AO or VXAO:A global AOmethod usingbrick-likej 1 O OOT @Al EUAAG Q
representations of a scene.

Game-client: the machine used by @layer to play the game.

Game-server: an authoritative computer that exists as a brokeof information between game
clients in online video games. Video games that utilize the clieserver model necessitate such
machines. Games that utilize peeto-peer knowledge distribution do not have traditional game
servers. Due to this, they are also ane susceptible to cheating and abuse.

Wall-hacking: a colloquial term that has emerged to describe a particular kind of cheating in online
first person and third person shooter video games. This kind of cheating enables a user to be able to
observe enemycombatants through otherwise obscuring geometrytherebyproviding the user

with otherwise inaccessibleknowledge and an unfair advantage over the opposing team.

Aim-botting: a colloquial term emerged to describe a type of cheating in online shooter games

whereby the computer assists the user to effortlessly aim at weak points of enemy combatants as
AAOAOEAAA AU CAIi A 1TTCEA8 4EAOA xAAE PIEIT OO Al OI A
part known to be susceptible to increased damageom virtual hostile munitions.

DRM: Digital Rights Management. Software intended to prevent unauthorized copying and use of
copyrighted material.

Banning (online games) : forbidding a player from participating in an online gameeither
temporarily or permanently .

Root-kit: software that operates at operating system level by posing as a system driver. When
operating at this level, it is able to hide its presencky the virtue of pre-installing before known
counter-measures With this advantageit simply changes the operatiorof the system at any desired
level with full impunity .

Player armature : askeletal shape representing playeposesat any point during a gameplay
session.

Potentially Visible Set or PVS: agrouping of objectsor individual primitives (triangles) within
objectswhereby elemerts of the set are potentiallyzbut not guaranteed to bez visible.

Bounding Box: a virtual box used to represent all geometry contained within. Mostly used for a
single entity or player. They tend to contain a lot of empty space.

Occlusion Culling: determining whether a bounding box or a complete piece of geometry is visible
from an observe® O OAT O diveRall Fof theim@st important 7 obstructions.

Player Frustum: avirtual pyramid stretched out from the vantage point of arobserver that defines
OEA T AOAOOAOGO AEAT A T £ OEAxS8

Graphics API: an application programming interface used to render computer graphics.

Headless Instance (Graphics API): an ingance of a graphics API used to render only to a piece of
memory instead of adisplay output (i.e.monitor). Such an instance is usefdbr GPGPU processing

Texture: asingle or a collection of2D, 3D or cube imaggused in graphics APIs to store color
information.

Sampler: commonly used to refer to arabstraction in graphics APIsaround textures. Every texture
can and usually does come with aaccompanyingsampler to filter the texture upon colorretrieval
in order to improve appearance. Samplerscommonly have hardware units in video cards in order
to speed upretrieval, filtering and provisioning of color output.

Material: a collection of samplers used to define the appearance of a surface. These samplers can
define different aspects of the material such as roughness, emissivity, speculargyount, albedo
color, specular colorand other attributes of the material. They can also be procedurd(i.e. defined

by code). However, for the purposes of this application we are interested in how they distribute
reflected light overall.

Pre-Pass (Computer Graphics): using computer renderingalgorithms to produce results not yet
ready for display. In fact, such results are then fed as input to another rendering algorithm (i.e.
anotherODAOOS6 q OI bDOI AOAA Z£ZET Al OAOGOI 6O 10 Ei ACAOUS

Instance (Geometry) : a piece of geometry (i.e. a collection offBtriangles) usually with asingle
material. However, this is not a hard requirenent as some game engirsamay support geometry
instances with more than one material.

Centroid (Geometry): the geometric centerorOf AAT 6 q T £ A OAidendioas. b1 ET 600 EI

Map: acolloquial term used to describe the environment in which players engage with each other
like a traditional city map.

Thread (code): computer instructions that run simultaneousto other instructions in a computer
program.

Thread -safe: interacting with a thread in an unexpected manner result$n corruption of its data,
potential crashes or unwanted side effectOperationsdubbed thread-safeexist to prevent the
aforementioned scenarios.

Temporal Super -sampling (a.k.a. Temporal Anti -Aliasing or TAA) : a technique used in
rendering to obtain moregeometry and lightinginformation not available at afixed resolution by
perturbing/jittering initial rendering conditions (i.e. the frustum)and accumulating results over
time. In its most prevalent form the acquiredlimited history of resultsis averagedto provide anti-
aliased output

Selective Super-sampling: atechnique used in rendering to obtain more detail by casting more
rays only when a certain selectivecriteri on is met.

Boolean flag: a flag that can be either zero or ond.he name Boolean refers té&eorge Boole.

Bitwise operation s: math operations involving bitsi E8 A8 O U A O Foh&amble dbitiise A 08 q
AND operation checks to see there are common bits set to onén two different binary numbers,
yielding a non-zero number in that caseand yielding zero otherwise.

Ray/Object Masks (Ray Tracing APIs) : a mechanism to allow rays to ignore or include certain

objects based on bitwiseANDI DPAOAOET 1 O ET 011 OET ¢ AET AOU 1 01 AARAOO |
I AEAAOO AT A OAUO Al EEA8)& A AEOxXxEOA ' . $ 1-DAOAOEI
zero number the intersectiontest occurs Otherwise the intersectiontest isignored.

Simpli fication (Geometry) : Reducing the triangle count on a piece of geometry while roughly

preserving its shape Usually used in computer graphics to reduce renderingme for objects at a
distance where reduction in geometric complexity is visually unnoticealel.

Dot Product (Algebra): ai Al CAAOAEA 1 PAOAGEITT ET ON.MBET ¢ Ox1 OA
commonly used to get a mease of the angle betweerthe two.

Matrix (Algebra): atwo-dimensional table containing numeric values.
Square Matrix (Algebra): amatrix where the number of rows and columns match.

Symmetric Matrix (Algebra): amatrix where the swapping the columns with rows does not yield
different cell values

Low Discrepancy Sequence: a sequence of pseudorandom numbers that provide even coverage
therangeZ£OT I xEEAE OEAUB8 OA DE A ElighA dis&éparicy8sequdndeshiclc O ET Al
may have toomany similar results clumped togetherover acertain period of evaluations An

exampleof low discrepancy sequencess the Halton sequence.

Blue noise: in the domain of noise, blue noise is low discrepancy compared to white noise
Therefore, it can be used forandom sampling of datawhen evencoverageover anygivenrangeis
desired.

Orthonormal basis (in 3D space): three vectors in 3D Cartegn space that are all at right angles

to each other aml with a length of exactly one! O E A x A 08 O(pointing tBwadsinhedd ti

viewer is lookingh OBb OAAOI O | PI ET OET ¢ 10600 T £ OEA OEAxA0B0
(pointing along either the left or right shoulder of the viewer) canconstruct such a basis.

Principal axe s (in 3D space): the three axes determining X, Y and 4lirections in 3 dimensions.An
orthonormal basis would contain such axesalbeit oriented for that basis

Binary Space Partitioning or BSP: Thisis an algorithm that recursively splits the world and
arranges the splits on a tredike datastructure until certain conditions are met A BSPtree is a
special type of acceleration structureconcerned with splitting the world in half on every node.

BSP Leavesthe bottom-most nodes on a BSP tre@hey are at times used for PVS filtering as they
can be wide enough tenvelopea considerable amount of space.

Flood-fill: aclass of algorithms that explore unexplored neighbourantil a stopcriterion is met.
Potentially visible sets can be constructed via a floafill approach by recursively exploring open
connected areas.

Traceroute (computer networking): anetworking utility that measures the latency of every hop
(i.e. stop)along anetworking path to a certain host.

Re-orthonormalization : a previously orthonormal basismodified to re-satisfy the condition.

1.INTRODUCTION

Cheating in video games is one tifie most problematic issues facing video game developers
and publishers alike. A survey byrdeto[1] revealed a staggering 37% of respondents admitting to
cheating. It further revealed that 76% of respondents stressed the importance of preventing
cheating in online gamesThe CEO of Irdeto further stressed that not countering these issues will
lead to lower engayjement and shrinking revenues which is aommonly reported[2] phenomenon.

In awebinar hosted by GamesBeaRiot Gamegevealedthat cheaters roughly cause33% of
affected playes to discontinue playing an online gamg3].

In this document weprovide a solution to preventone of the most subtle types of cheating:
the wallhack. The reason wallhacks are notoriousldifficult to detect are their very nature: the
player while knowing where enemy combatants are, may intentionally not look their way to
deceive spectatornbservinggameplay This provides for incredible difficult y in definitivel y
proving whether the observedplayer was indeed engaging in cheatingsuch inquires themselve
result in paranoia amongst othermlayers and reducetrust in the fairnessof the game itself

This especially becomes problem in the world of e-Sports wherelarge prize poolsare at
stake and fairness is incredibly important A notable scandal is tht of the 2014 banning of
professional competitors Hovik Tovmassian (Team Titan), Simon Beck (Team Alternate) and
Gordon Giry (Team Epsilonvhich made headline$4]. They werecaught and bannednere days
before the DreamhackWinter 2014 CS:G@hampionship tournament where aprize pool of
$250,000 was at stakf4]. It is important to note that this prize pool is by no means the largest of
suchpools as there are competitions with much larger prize pools such as the $1M at stake for B
3 E O A Fashphist 8 éhampionshipg5]. Prize pools for CS:GO alone have totalled more than
$100M in a breakdown provided byValve Corporatior{6].

https://www.forbes.com/sites/nelsongranados/2018/04/30/report-cheating-is-becoming-a-big-problem-in-online-gaming/?sh=f613d3676637
https://www.theverge.com/2020/5/6/21246229/pc-gaming-cheating-aimbots-wallhacks-hacking-tools-developer-response-problem
https://www.brighttalk.com/webcast/12339/489903?utm_source=vb&utm_medium=marketing-post&utm_content=-jun-17&utm_campaign=june-29-denuvo-webinar
https://www.ign.com/articles/2014/11/25/csgo-esports-community-shaken-following-revelation-of-cheating
https://www.prnewswire.com/news-releases/1-million-on-the-line-for-flashpoint-2-and-the-largest-csgo-prize-pool-of-2020-301158145.html
https://www.esportznetwork.com/csgo-esports-reaches-100-million-milestone-for-prizes/

2. BACKGROUND

Many attempts have been made in the past to eliminate or detect not just wdiacking but
other forms of online cheating for first/third person shooter video gamesin the section we shall
cover notable attempts.

Most anti-cheatsoftware includes technology that runs on client systemsExamples include
VAC (Valve AntiCheat), PunkBuste and BattIEye™. There aretwo considerableissues with this.
Firstly, many consumersfeel that these technologies are very invasive as th@perate at a
privileged level to scanthe client machine for signatures of known cheat applications. In this sense
they are comparable to intrusive DRM software (used by the music and filimdustries) or intrusive
Anti-virus software. This issue of invasiveness is so bothersome thatl E U U A @tieét Soluttoh O E
was classified as malwag by the EFIF7] at one point.Secondly, cheat applications can indeed be
released with new signaturesor equipped with sophisticated techniques that place them below the
anti-cheat application at operating system level (bprior analysis of the host anticheat software)
and effectively operate as a rookit. Detection or removal of such technology auchpoints
becomes either incredibly difficult or virtually impossible. State of the art @ademic proposals such
asBlackMirror[8] released at the ACM SIGSAC this ygeiopose placing anti-cheat softwareinside
YT OAT 6 O 3 fact,) A 10O | Ab{ERalsd ArdpBsks@xecuting anticheat code in their SGX
secure execution enironment embedded in their CPUs whicltooperateswith an anti-cheat server
periodically. SGX has been shown to be vulnerable viaultiple vectors[10] and exclusive to Intel
CPUs onlyl 6 E ArécénddDccess with running a moderiwolfenstein title on ARM CPU$11]
highlights the necessity for a solution that does not rely on vendor specifguarded execution
environments. Additionally, BlackMirror does not address complex rendering pipelines such as
10AEA)) 24880 AT A it ®Hiume wdik.6AMI AROS 2F phdbGBasiEh@llehges
that can be run inside virtual execution environmentsrafted specifically to report false negatives

The patent itself emphasises the fact that its propewperation rests on the client machine not
having had enough time to develop countermeasures to challengpsovided within server-supplied
OA1 A A E Giveh @eldévélopment history of cheating software, this is a never éng struggle for
anti-cheat (andmore generally DRM) software developmeniSecureBoot Attestationis slowly
gaining popularity as a clientside anti-tamper measure. However, its adoption remains largely
voluntary and low as many clients with older hardware have found it difficult to procure the TPM
hardware required for its operation.More recently, SecureBoot via TPM 2.Was dealt a decisive
blow via the BlackLotus bootkit[13]. Also, without strong session layer security there is noneed to
circumvent TPM2 in order towall-hackasdemonstrated by hardware walthackgq14] that examine
traffic externally and place makers on translucent diplays.Even with such a measureCV/Al-
basedhardware aimbots[15] are possible though this is not a focus ddurs. Initiatives like Stadia
have claimed to put an end to cheatir{@6]. Aside from still being vulnerable to CV/Aibased
hardware aimbots,their additional input latency[17] introduced by the cloud provider becoming
the man in themiddle makes themunacceptable for competitive gming.

http://news.bbc.co.uk/2/hi/technology/4385050.stm
http://news.bbc.co.uk/2/hi/technology/4385050.stm
https://lifeasageek.github.io/papers/seonghyun-blackmirror.pdf
https://www.freepatentsonline.com/y2020/0206635.html
https://en.wikipedia.org/wiki/Software_Guard_Extensions#Attacks
https://blogs.nvidia.com/blog/2021/07/19/geforce-rtx-arm-gdc/
https://patents.google.com/patent/US20060247038A1/en
https://www.welivesecurity.com/2023/03/01/blacklotus-uefi-bootkit-myth-confirmed/
https://www.youtube.com/watch?v=AIbkt6Rl8FA
https://arstechnica.com/gaming/2021/07/cheat-maker-brags-of-computer-vision-auto-aim-that-works-on-any-game/
https://arstechnica.com/gaming/2021/07/cheat-maker-brags-of-computer-vision-auto-aim-that-works-on-any-game/
https://www.pcgamesn.com/stadia/google-stadia-cheating-aimbot
https://www.pcgamesn.com/stadia/google-stadia-cheating-aimbot
https://piunikaweb.com/2022/06/20/nvidia-geforce-now-input-lag-issue-persists-but-there-is-no-fix-in-sight/

Some technology has emerged as solely servside anti-cheat technology Notable
mentions are that of FairFight™™ by GameBlocke 6 A1 O A 8l€rnihglbAsEdEahtidimbot
OI 1 OO0ETT AT A -ledmng baded antiwalh&cIEdoldion. FairFight proposes a
statistical approach calledAlgorithmic Analysis of Player Statistics (AAP$) 8] which tracks player
behaviour and compares it to a wide variety of data. The issue withis approach is thatthere can
be false positives as they have been reported by the community at large. This further reduces faith
in the system amongst playerslt is notable that Microsoft[19] and Gamblit Gaming20Y 8 © B A OAT 0O
also useplayer tracking to achieve a similar goalflagging players thatadvancetoo quickly in a
game.Our system by contrast is deterministiand simply prevents walkhacks from happeningn
the first place. 6 A 1 _@Acdbitelearning basedapplication [21] solely targets aimbotting. While
they allege that it isachievinghigh accuracythis approachunfortunately still provides for
community frustration as it does not prevent the act but rather addresses it after the fadtleedless
to say, it does not address the issuat we addressin this documentwhatsoever.. A @1 1 8 O
approach[22] is another interesting solution that randomly takes screenshots (pictures) of the
Pl AUAOG O OAOAAT AT A ODPI 1T AAO OGie thib maworkinkigly,t OAOOAOO
provides no guarantee that sophisticated rocEEO 1 EEA AEAAOQET ¢ O1 £AOx AOA x1 1
screenrecording mechanism andnomentarily turn off wall-hacking when screenshots are being
taken.

Conceptually speaking, the olsest solutiors that we have seen to date is that of
6 Al 1 _Q28[iinthid €erver side occlusion cullingattempt or work s derived from it such as
CornerCulling24]. While conceptually similar, our solutionis far more accuratewith far fewer false
negatives This is made possible hyl) making the hardware necessary to effectively solve the
problem a pre-condition to running the algorithm and 2) making good use of the hardware bysing
an algorithm built upon extensiveray-tracing researchto solve a difficult dynamic visibility
determination problem at low resolutions for many viewers simultaneously.

3. SOLUTIONDESCRIPTION

Our invention is providedasmiddleware to server-side developers forintegration. Itis
dubbed SauRaySauRay requires a server enkdnment that has areal-time ray-tracing-capable
GPUor provides reaktime ray-tr acing in somereasonablecapacity. This includes frameworks such
as Optix real-time rendering pipelines that utilize voxels,(signed) distance fields(known as SDFs)
or other geometric primitives. Even thoughour current implementation is crafted around modern
GPUbasedhardware-accelerated raytracing platforms, our algorithm follows the sameprocedure
in the absence of such utilities

SauRaystarts off by launching a headless instance of a graphics APtis instance will not
be headless ifwe are launchiC 3 A02 AUS O ATReMP héhFehuests@edigof
samplers, materials and mapgeometryinstances. It is prudent to cache the range of materials that
describe the varieties of playemppearancesat this stage to avoid feeding them later (if the game
supports player appearanceswith greatly varying materials). This information is then retained

https://www.i3d.net/products/hosting/anti-cheat-software/
https://patents.google.com/patent/US20180182208A1/en
https://patents.google.com/patent/US20150194016A1/en
https://www.youtube.com/watch?v=kTiP0zKF9bc
https://www.gdcvault.com/play/1026331/ML-Tutorial-Day-Beating-Wallhacks
https://www.gdcvault.com/play/1026331/ML-Tutorial-Day-Beating-Wallhacks
https://technology.riotgames.com/news/demolishing-wallhacks-valorants-fog-war
https://github.com/87andrewh/CornerCullingSourceEngine

until the nextmap changeOnce fed, our visibility determination system is kicked off on a parate
thread which usesour proprietary algorithm. This thread then consumes updated player
information every frame: viewing angles, positions and; potentially z animation states (if armature
support is presenf. Using updated player informationand previously cached player materialst
updates its representation of the players inside SauRay. It may also geidated lighting

information per-frame (if the game supports dynamic lightinghat casts shadows$. Additionally,
dynamic changes tenvironment geometry are retrieved if that is supported as well(such as doors
openings, elevators moving,obstructions being add orremoved etc.). Our algorithm then proceeds
to conductthe innovations outlined below to determine pair-wise visibility between players.Pair-
wise visibility information is subsequently fed back to gameserver code for packet filtering.

Launching our process in a separate thread sonsideredour threadeddmode and is always
one frame behind the serverPart of our algorithm is crafted aonund dealing with challenges
resulting from this (seeThe need for forward projection)8 ! -tbdadeddmode is alsoavailable
but it will increase serverframe cost andthe increasemust be examinedto avoid violating server
refresh-rate requirements. Receiving map informationcan be threadedas well as it would allow the
game server to perform other tasksimultaneouslytt OOh 11 O ET AOAAOET ¢ OEA
that of ours.The most ideal scenario would have ih map loading and per frame prepasses and
passes all executing on one lorgunning thread z with proper synchronization of coursez to save
on thread creation and destruction overheadHowever, we did not go this far for any of our
prototypes.

3.1 HIGHLEVELOBJECTIVE

As mentioned the objective of the algorithm is to filter outgoing traffic to each player based
on computed pair-wise visibility information between players Thiscomputed information is stored
into what is called avisibility matrix . The visibility matrix is a square matrix representing the
visibility of each player against every other player. The diagonal elements of this matrix are of no
interest to our application. This matrix is not symmetric as one player seeing another does not
guarantee the reverse. Each cell in this matrix is configured to have a set number of Boolean flags
representing player visibility in different frames. Our applicationcan tracka limited history of
visibility which can be as low as one frameé\ny bits within acell being one represents a transmit
AAAEOGEIT 11 OEA OAOOAOBO PAOO8 /11U A AAIIL T &
and 2 are used to illustrate this matrix.

The reason for maintaining this temporal history is hat our algorithm employs techniques
for capturing players with sub-pixel footprints in low resolution virtual frusta that at heart have
some stochastic element to thenfsee Selective Super-Sampling). Whenthose techniques are not
necessary, it still employsa per-ray jitter much like that in Temporal Super -Sampling (with the
option to choose eitherblue or white noise). Theideal use casdor this jitter is to capture slightly
visible players at medium rarge through holes wherEorce-Casters are forgotten or not placed at
all.

O\

Player ID 0 Player ID 1

Player ID 2

Player ID 3

Figure 1.

An example scene involving four players

Player O Player 1 Player 2 Player 3

Player 0 oo0 [000 | 100 | 100
Player1 | 000 000 100 100
Player2 |100 [100 [000 [100
100 |100 |000 | 000

Player 3

Figure 2.

Visibility matrix associated with Figure 2 at frame zero.
Temporal memory is limited to three frames in this setup.

3.2 TOOLKIT FOROW RESOLUTION VIRAU FRUSTA

Though we areemploying graphics hardware to perform visibility determination, our ray
budget is not infinite: certainly not large enough to account fothe collective native client-side
resolutions of all connected playersTherefore, we need to bgrudent on how this budget is spent
We have devised three main tools that we use throughowur algorithm to deal with low resolution
virtual frusta:

3.2.1 BOUNDS STRETCHING

With insufficient virtual resolutions it is possible for distant players to become invisible as
their occupied virtual screen realestate shrinks. Whilez as mentionedz our algorithm employs a
jitter similar to temporal super-sampling to capture subpixel detail, it is important to employ
additional measures as well. A prgpass is employed in our ajorithm to determine how far we can
stretch player bounding boxes or armatures without exceeding twice their initial volume or
intersecting the world at large.In practice one can be flexible with thestretched volume limit
though caution is provided to na exceed that amount by much more than twas it can break the
algorithm. Information gathered at this stage is used to increase player sizes as the virtual
resolution shrinks. This is referred to ashounds stretching .

3.2.2SFLECTIVE SUPERAMPLING

Another tool used to counter a lowered resolution is as follows: from every pixel we trace a
cone starting from the eye with the area of the base being roughly pixel sized. Players with
bounding spheres that are enveloped by this cone or overlap this cone areaed subpixel. If a
cone encounters a supixel player, it will launch a configurable number of additional rayg jittered
differently z to attempt intersecting the subpixel player. This is a form of selective supesampling
and is done with the sole pygose of increasing the likelihood of visibility for a subpixel player. Our
approach to this test is actually simple and more optimized than using exact cones. We simply
AEAAE EZ OEA AAT OOT EA 1T &£ OEA bl AUA Oé@ughfrbn theAOAA AO
viewer by using a predetermined multiple of its bounding sphere radius shrunk with increasing
viewer pixel footprint. If the player is sufficiently far enough, we further measure angle difference
via a dot product between the originally trsA AA OAU AT A A OAU b1 ET OET ¢ O1 C
centroid. If this difference falls under a certain threshold increased with increasing viewer pixel
footprint, the player is deemed subpixel and the above mechanism kicks in. In fact, given the above
approach, players may not actually be supixel for this mechanism to effectuate. This helps with
visibility determination even before players actually become suipixel. We provide an option to use
low discrepancy sequences such as Halton or blue noise f@ndomization instead of the default
white noise. Figure3 illustrates these two conditions.

Figure 3.
Our simplified two-step checking process for sutpixel players

The aforementioned process is not exclusively reserved for rays casted from frusta directly.
Secondary ray conesverlapping very distant players can alsancrease sample count while
accounting for intersected surface or luminaire properties especially whethe primary ray
footprint is large. A detailed examination of propagged footprints is covered in [25].

3.2.3FORCECASTING GEOMETRY

This approach, much like selective supesampling, is a mechanism to force launching of
more rays. Aforce -casting geometry is a piece of geometry that launches additional rays uniformly
AAOI OO EOO O0OOAAAA AOAA xEAT APPAAOEI ¢ xEOEEI A b
even visible to do so. Its sole purpose is to cover visibility for tiny holes & may not be caught
using our usual mechanisms. A straightforward application of this concept simply associates a
OEOOOAIT PDPEGAI 60) $ xE OE-calddpéeseht fr alsceheETihécodk Ainningd i A A O
for that virtual pixel will check to see if the forceAAOOAO EO xEOEET OEA DI AUAOS
launch as many additional rays necessary to cover its surface area. If the virtual frustum has a
sufficiently high resolution, more than one virtual pixel can be associated with a foregaster to
further spread the additional trace load even if that means more virtual pixels have to individually
check to see if their associated forceasters are in view.

3.3 VISIBILITYREGISTRATION

Pl AUAOGS O .AnS EatloAsProvilAdd¥ the server which should theoretically match that of
OE A bIAA wnderdported ratio places the player at a disadvantagand an over-reported ratio
should berejected sener-side and regarded asmisinformation . This mechanism prevents players
from abusing the systemIn scenarios where this information is not availablea reasonable
maximum frustum aspect ratio is used for all players equallfi.e. 16:9). Our algorithm works best
when player armatures are available serveside. However, if only their bounding boxes are
available, the rays will register player visibility as they intersecplayer bounding boxesand
continue along the ray directionas if these intersections did not occur until encounteringa solid

walll4EEO DOAOAT OO0 PI AUAOOS AT O1 AET ¢ AT gAO A&EOI 1 EEAE
behind each othervisually. To account for limited APl guaranteesa map-exclusiveray can be

launched followed by another potentially shrunk overlappingray exclusively for playergeometry

registering each encountered player along the way his is shown in Figure4. A reason why he

server may not replicate player armatires is increasingcomputational overhead. The registration

of player visibility is recorded into the visibility matrix described above

Figure 4.
Player registration for servers providing only bounding boxes

A replication of the abovecan also account for secondary rays (i.e. shadows) as long as the
second overlapping ray is only launched if the map is missed. This ensures that the shadow does
indeed belong to a player and not an obscuring building or structure behind.

Figure 5.

Player registration for a shadow ray blocked by an obscuring wall

3.4 THE NEED FORGRWARDPROJECTION

When pre-existing mechanisms for packet filteringg i.e. BSP visibility leaveg are replaced
with something far less conservativey i.e. raytracing z new challenges are introduced that need to
be addressedIn this section we examine these challenges and how they are resolved in SauRay.

3.4.1 HIGH-SPEESCENARIOS

When traditional meanslike BSP visibility leaves are used to filter packets, player
information is exchanged between players within the same visibility leaf which can be quite large
mostly obviating the need for anyextra care related to velocity However, when information
transmission is only reduced to instance where one player can see anotheg if that duration is
brief z this can because challenge8) | ACET A A OAAT AOET xEAOA A
and within one server frame, they are going to be past ap inawall. In that circumstance, the
Dl AUAOS O ET A& Oi A OE I brieflyaégarddsdiThidAsBenadti@idilusrated @ Giduke
6.

Figure 6.

A very fast playerdashing past a gapvill be missed intra server-frame if non-conservative pairwise
visibility determination is usednaively

bl AUA

The same issue can happen if a viewer is movingp fast past a player hiding in a gap in the
wall. Figure 7illustrates this:

Figure 7.

A very fastviewer dashing past a gapvill be miss a hiding playerintra server-frame if non-
conservative pairwise visibility determination is used navely

This issue can be exacerbated as the server refreglite goes down. It can be especially
problematic in games like Quake Il where the server refreshate is as lowas 10 ticks per second.

3.4.2 THREADEBMODE

As previously mentioned, one may run oumiddleware in O O E O A A A fArder tb $aveA
on performance. In this mode SauRay does visibility determination for the previous frame
parallel as the server evolveshe world to arrive at the current frame. This causes SauRay to always
be a singleframe behind the server. This can be problematic especially when the tickte is low
(i.e.Quake Il as discussed above) as illustrated Figures 8 and 9.

Rejected

atframet-1

Server has advancedhe viewer
to frame t, but will erroneously not

transmit basedon the algorithm being on

frame t-1

The algorithm has the viewer

Figure 8.

A naive application of threaded visibility determination can cause poppindor viewers

The algorithm
[has the player
at frame t-1

" The server has evolved thelayer

to a new position atframe t, but will
erroneously not transmit based on the
algorithm being onframe t-1 (ray miss)

Figure 9.

A naive application of threaded visibility determination can cause popping of players

3.4.3 FORWARIPROJECTION AS A SOIQN

To combatthe aforementionedscenariog we employ a technique that forward interpolates
frustum data with a future frustum provided alongside the initial frustum. Thisfuture frustumis
essentiallybuilt using the current frustum plus asmall amount of time in the futuregiven the
viewerd lbear and rotational velocities. Our APlexplicitly requests both frusta along with the
player ID when the developer is given the oportunity to supply vantage pointdata. Rays traced for
the viewer are randomly casted from in between frusta made vidinearly interpolating between the
supplied initial and future frusta using a uniform random variable in the range0.0 to 1.0 hclusive.
These in between frusta are reorthonormalized after interpolation. The user again has thehoice
to either useblue or white noise for the random variable. This way we have a high probability of
catching an enemy combatant that is not currently visible but will be in thaext frame. A diagram is
provided in Figure 10 to presentthis concept.

Rejected

Accepted

In between frustum

Figure 10.

Utilizing interpolated frusta for visibility detection ahead of time.

In that same sense, when the devel@p is supplying player armaturdgeometry datato
SauRaythey should take care taverlap several versions of thearmature/geometry using
animation data looking into thenext frame. The armature data supplied toour APlis essentially
constructed low polygan count pose geometry that represents the armatureds previously
mentioned this may not always be available and may simply be replaced with bounding box@gth
this approach combatants that are not currently visible by a viewer but will be in thaeext frame,
xEll EAOA OEAEO AAOA OOAT Oi EOOAA AEAAREompaied OET A Ol
O1 6 Al Houddirlg Bodg0lution described in[23], our solution is far moreaccuratewith far less
room for both false positives and negativeg-igure 11 aims to visualize this as well.

Figure 11.

Ahead of timevisibility detection via overlapping armaturegeometry

In all of our implementations we clip the velocity vectorfor forward projection against the
map using a single additional ray cast per player to ensure that final frtesdo not end up inside the
map, thus denying a sidechannel attack whereby players can leak information by slamming
themselves into walls.Also note that this mechanism does not replaciag compensatiori26] but is
rather additive to such a mechanism (i.e. forward projection should happeon top of lag
compensated player infemation if the server has this implemented.

3.4.4 HANDLING UTRAHIGHLATENCIESIASPECIALIZED LOHEADS

Onceround-trip time exceed a 100 milliseconds it becomes apparent that further
measures are requiredThe reason for this isdistinction is what we call the issue of intent. Envision
a scenario where a playewith a ping of a 100 millisecondds behind a pillar facing an enemy
combatant. Assuming symmetric bandwidth, it would take 50 millisecondsfoOEA D1 AUAO8 O
movementintent z i.e.to strafe either left or right z to arrive at the server.In other words, we
cannot predict the intent of the lagging player fast enough in order to forward projection their
actions into the future for aheadof-time transmission purposes.

For such a scenariave introduce specialized looka-heads. Specialized look-heads
provide the ability to cover very high latencies (as high as 250ms rountlip) by leaking a bit more
data in order to prevent popping.While this techniqueOAAOAAO 1T 600 OAAEIM&NOAS O Anx
maintains an edge over PVSs by ensuring that playesafficiently obscured behind walls are still
not transmitted. Such distinctions are not made via PVS approach@shether utilizing flood -fills or
BSP visibility leave$. To ensure that playersare not reporting fake latencies we canperform a
traceroute operation on their originating IPs. If their secondto-last hop latency is wildly different

https://developer.valvesoftware.com/wiki/Lag_Compensation

from their latency, they are bannedor attempting to exploit the algorithm through traffic rate
manipulation. Snce measures like SauRay angractically intended to prevent cheating in high
stakeslow-latency competitive matches this mechanismis not to be ovelly relied upon other than
in casual settings They simply act asareasonablefall-back in theevent that high latencies are
acceptable(such as using a SauRay enabled server to temporarily host a causal match)
Competitive-only servers such as those dfalorant that enforce strict player latenciesneednot rely
on this section of the algorithm.

The actual implementation of a looka-head involves what we cl sub-frusta. We effectively
divide a frustum into 9 pieces and launch rays from each piece as if it was a frustum all by itself.
This necessarily shrinks the resolution of each virtuasub-frustum and necessitates the
mechanisms described in the previous section for low resolution@.e. stretch-bounds and selective
super-sampling). In fact, the bounds-stretched player geometry an be placed in a separate BLAS,
grouped into a separate TLAS andnly served to the lagging playerThis denies players with low
latency an enlarged version of enemy geometrin the event that enough bits are left over for
geometry masks, separatstretched BLASes/TLASes become unnecessary and boustietched
geometry can share half of the bitmasks for geometry mask$his was possible for our
implementation for CSGO and the resulting geometry masks were solidified into what is
demonstratedin Figure 12:

Team A normal Team A stretched Team B normal Team B stretched
geometry (2 bits) geometry (2 bits) geometry (2 bits) geometry (2 bits)

Figure 12.
Our final geometry masks for CS:GO with loe&heads implemented

However, this may not always be possible as these bits maybe used for selectively
presentingcertain]l AOAOOET ¢ CAT 1 AOOU OI AEAEAOCAT O P1 AUAOO j
certain portals). In that event, the overall solution will still be efficientas themapd O ‘eswill Be
shared amongst the two TLA&s saving memory and compute.

The subfrusta mentioned previously are composed of me that maps to the original frusta
andanother 8 placedAO AT O1T AOO 00001 01 AET ¢ O Erfterpplated 0dkO8 O ET OA
direction is maintained in all casesThe corners are visualizedelow in Figure 13 and are aligned to
world principal axis:

Figure 13.

Approximate arrangement of sub-frusta with the main one in orange

Please note that looka-heads arranged on 8 corners are not in and of themselves nowld
can be found in prior art such aLornerCulling24]. However, our approach maitains all the
benefits of a full frustumgz including forward projection and shadowrays zby simply subdividing
the appropriated space and rerunning the same algorithm.This is very unique to our approach.
Figure 14 is a screenshot of sub-frusta in action in CS:GO (debug view):

.(1 '-’F;
i 3 Y

(i A | . f

Figure 14.
Sub-Frusta in action:ni OA O E Asplb Vie 0fAhe Blaer above the stairs

The look-a-head corners are clipped during the prepass phase described above to ensure
that they do not end up insde walls. Every look-a-head corner alsoconductsline-of-sight tests to
every other enemy player in the game. This is necessary as lealhead corners alone will not be
able to prevent poppingcaused by rapid head swings. They can only account foopping resulting
from lateral movement. This is the only location in the algorithm that we conduct linef-sight tests.
Line-of-sight tests occuron three locationsalong playervelocity vectors to account for forward
projection of enemy positions. Much like force-casters each virtual pixel within a subfrustum can
either take on one or more lineof-sight testsdependenton sub-frustaresolutions. For example in
our CSGO implementation with daseresolution of 640x640, each sudrustum will approximately

https://github.com/87andrewh/CornerCullingSourceEngine

have aresolution of 213x213.Given that the upper bound on player count i64, the first 64 virtual
pixel rows cannaturally be associated with lineof-sight tests Since each virtual row has also 213
virtual pixels z well above thethree suggested above the first three virtual pixels cantrace along
the combatantd ¥@locity vector. This is ourimplemented approach for evenly distributing line-of-
sight tests across virtual pixels.

3.5 PATH-TRACING FORUTUREPIPELINES

While the simplest use case of our API involvdew (usually no more thanthree) bounces
per virtual pixel per player (accounting forreflections or AO combined withdirect shadows), we
canprovide standard uni-directional path-tracing codethat allows further bouncesof light based
on hit material properties making our technique relevantfor path tracedonline multiplayer games
in the future. Our procedure for visibility flag determination remains the same for further bounces
effectively. This makes oursolution very adaptable for rendering technology that may become fairly
commonplace in the future One interesting aspect of our pattracing approach,adapted to our
solution, is that diffuse secondary rays (as irdiffuse rays castafter the first ray) neednot be
arbitrarily long. They can be as short d@#o0 to three times the height of the average plasr in order
to capture relevantcombatantsin the environment. Thisagainprovides for natural optimization
that lends itself well to our approachln the event that player shadows fomearby light sourcesare
visible to clients, NEE secondary rays can be launched folayer registration as well. Light sources
can be picked at random{again using either high or low discrepancy sequences)s well for
distributing the cost acrosssamples andframes much likethe explicit many-light sampling
approachesfound in computer graphics literature. However, all of this is done in service to player
visibility detection and not rendering visuals.As a result small dim lights too distant to cast player
shadowsor leavenaoticeableimprints can besafelyignored. Effects such as smokewhich cause loss
of perceived light through scattering can be implemented in our algorithm via passing an
additional strength valueon the ray payload. This value can be diminished as the ray travels
through absorbing material with per-vertex valuesdescribing the absorption factor. When that
value fallsbelow a certain thresholdit can terminate the ray Alternatively, one could implanent
stochastic termination of the ray based on theertex absorption factor as well (i.e. ®ussian
rouletteGstyle). In practice, when we had to accountfor smoke inour CS:G0ntegration our solution
tumedi 60 O1 AA Z£AO OEI bl Alow). OAA OAUT AT EA CAT T AOOUG

Current generationmultiplayer games such as CS:GO or regular Quake2 wilally need 1
or 2 rays per virtual pixel as they do not account for complex light interactions on screellodified
multiplayer games such as Quake®ith RTXdo provide us with a window into what could be
commonplacelooking forward8 (1 x AOAO 10AEA ¢ 24 8 sootpofulaGE DI AUAO
the moment even thoughour approachcanfully support it.

A diagram is provided in Figurel5 (with only two path segments)to demonstrate our
approach torepurposing path-tracing for player visibility determination .

Short
diffuse
@ secondary

Long secondary
rays for sun light

Figure 15.

Using path tracingsolely for visibility determination in our algorithm

4. OTHER CONSIDERATIONS

This algorithm by nature places constraints omplayer information availability. Thus it is
important to account for thatin code related togameplay and beyondin this section we explore
suchareasof importance.

4.1 THIN-CLIENTLEANING

Our algorithm desires network code designthat authorizesthe serverto do most of the
CAT A x1 Ol A 8. Ohisis@dt i Ba@ 1B iis Got applicable to thick-client models.For thick-
client network code, additional checksmust be placedn order to avoid exploits such as spamming
different frusta acrossthe environment to break the algorithm.Suchmeasurescould alsoavoid
cheats such as invulnerabilityspeedhacking, phantom bullets and falsedeaths.

4.2 AUDIOCUES

As enemy player informationis no longer consistently available, it is important to have a
strategy for emitting sounds related tounseen players. Either of three strategies is possible:

1 Randomizing the origin of sounds emitted from players. The amount of randomization can
increase & the origin itself becomes more distant from the listener. This would maintain
correct sound spatialization while decreasing information leakagaith distance. We
currently employ this for our third party integrations.

1 Sending only stereo channel volumealong with a sound ID. While not stereaorrect this
could be a bandwidth efficient way of providing audio cues without unveiling audio origin.

9 Live audio streaming. This is an interesting strategy dsprovides complete origin
anonymity while technically being able toemulate spatialization server-side. Games like
Call of Duty: Warzoneuse italbeit not for avoiding player information leakagebut as a
means of purposefully leaking nearby combatant radio chattett can be repurposel for
origin obfuscation as well.

4.3 RADAR AND SCREERASEDPINS

When transmitting such information, one should be careful to only transmitwo -
dimensional information and withhold as much data as possible without breaking functionality.
Pins that project a 3D point onto the screen can simply do this servside and only transmit the 2D
screen location when it is in view for example.

4.4 NON-VISIBLE PHYSICAL CSBE

These should be handled via transmitted serveside signals An example ofthis is a player
walking backwards into another player whois not in view. The server shouldcheck for this
condition server-side and transmit a stop signal to the backstepping player.We have seen this in
action in CS:G@hich is quite server-authoritative.

4.5 IMPACT ON LASSWITCHING

Lag switchingis slightly stunted underthis solution compared toother filtering
mechanisms (i.e. BSP visibility leavesThis is due tothere being far fewer opportunities for player
data to be needlessly available. Thus lag switchers will hata fewer advantageousscenarios
where withhold ing outgoing updateswill allow them to advance the game state in their favor

4.6 TRUST OF USERUPPLIEIFRUSTUM INFORMATION

As hinted insection 4.1, careful scrutiny of usersupplied data is important.User-supplied
frustum specifications such awertical field-of-view angles and aspectatios are no exception
Fortunately, there are no real avenues of abuse in this regard: ithent under-reports these values,
they are placed at a disadvantage. Values supplied beyond a reasonablegeacan be rejected
server-side. In our integrations, such values were not availd server-side and thus we assumed
reasonablemaximums of 90 degrees and 16:9 aspect ratider all y-FOVangles and aspect ratios
respectively.

4.7 USING SIMPLIFIED GEGMRY

Using simplified geometry when available is absolutely desirable. However,should be
noted that said geometry should fit in the geometry it represents order to avoid falsenegatives
during gameplay(i.e. playersbeing falsely invisiblg). In other words, it should not be a conservative
O x O A b btdaddbciatedgeometry. Primitives reserved for client-side occlusion culling could be
great candidates for this purpose.

4.8 PLAYERASSOCIATED GEOMETRYE. VEHICLESPROJECTILBS

Such geometry should be traced and have thedutgoing packets filtered like anyplayer.
The only difference is thatthese entitieswill not be coupled with any ray-tracing frusta.

4.9 DYNAMIC GEOMETRY

This is one of the most interesting points of care in our applicatiorur philosophy with
respect to dynamic geometry is to err on the side of more visibility (i.e. false positives). For
example, if a door is signalled to be opened on the server, any obstruction representing it in our
acceleration structure(s) should be renoved before thedoor begins to open If it is signalled to be
closed, the server should wait untithe door is completelyclosed andonly then re-introduce the
obstruction representing the door n the acceleration structure(s).In CS:G@e represent smoke
plumes asopaqueoccluders.in game world, they are indeed fully opaque for a period of 15 seconds
before they slowly becomdully transparent (this takes 3 seconds)We simply remove our smoke
representation at the 15 second mark whictboth forbids a great deal of information leakage while
allowing the algorithm to maintain its simplicity and avoid any additioral overheadassociated with
computing scatteringor performing Russianroulette. This alsokeeps itin line with our philosophy
outlined above aspackettransmissions during those 3 seconds occur as if thBumes were not
there, avoiding any sensation of popping:lient-side.

The outlined philosophy becomes important when consideringarge moving vehicles or
debris capable of obstucting player vision.In order to correctly allow such occluders to obstruct

players without popping, their current and future models can be quicklyand roughly sphere
packed Spheres that are common to both models can then be isolated and transformed into
obstructive geometryplaced on our acceleration structure(s)

9. FLOWCHART

The following is ourflow chart of the algorithm. The simple route is crafted to handle
current generation games with few visibility requirements (i.e. CS:G@r Fortnite RTX) and the
path-tracing route is intended for games with more complex visibility requirements (i.e. Q2 RTX).
There are similarities anddifferences in both approachesvorth mentionin g.

The simple (AABB) approach requires that rays penetrate player bounding boxes and
continue. The @th-tracing approach does noeand indeedbouncesrays againstplayers as if they
were no different from the surrounding environment (i.e. using surfacematerial properties). This
difference in approach is due to the fact that player AABEsgiven their conservativedimensionsz
can occlude other playelAABBswhether in a1 A Uflighuén ©r when casing shadows This is in
contrast to player geometriesresembling armatureswhich can be fitted enough to prevent such
obstructions and thus idea for pathtracing scenarios This necessitates encoding player IDs on ray
payloads until the entire transport path reaches a light source in the pattracing case.

All rays other than shadow rayg(i.e. primary, reflections, global AO etcihp the simple
algorithm are ur-interested in light sources This is due to the fact that games such as Fortnite RTX
or Rise of theTomb Raider(which features global AO via VXAQjay always have a background
amount of ambient light, enabling player visibility even in lowlight conditions. Thus, reaching a
light source is not necessaryor such rays Conversely the path-traced route z whether NEE or
material scattered raysare concened z cannot ignore light sources aboth independentand
dependentvisibility is achieveddueto interactions (or lack thereof) with them.

AOQOor reflective mirror rays in the simple case or NEE rays in the pathaced case utilize
their own custom logic This necessitatesadditional entries in the SBT when using modern
hardware-accelerated raytracing APIs thus, reducing additional burden on ray payloads and
preventing code from cluttering into a single SBT entryThe path-tracing route does not keep trak
of hit-types precisely because of suchehoice.When conducting alternative forms of tracing (i.e.
against SDFsyoxels, etc.this also impliescustomray logic in line with this philosophy. When
tracing against SDFs for examp|¢he AO or NEE query maonly have had to come close to a
present player along its pathto initiate a player registration. The minimum necessity is @hangein
visible lighting according to the clientside rendering pipeline.

In the event where the game falls somewhere inetween (such as Quake Il RTX where
client-side rendering is pathtraced and the server provides AABBSs), it is worthwhile to create
armatures serversside in the interest of correct visibility determination.

Server loop

Consumption loop

Start game session

\J

Feed map

i

:

Retrieve player updates
over the network

'

Run game frame

Feed per- frame data to
SauRay (non-blocking if
threaded)

\

q Perform map
preparation work (A1)
\i
Do frame pre-pass and
Per frame " pass (A2)

Retrieve V|5|b|I|ty matrl
ast frame's if threaded)

(

\

ap
mation...

Start graphics-APl/ray-tracin
framework instance

\

T
Prepare and feed back the
visibility matrix to the
game server...

J

Transmit player packets
via consulting the
V|S|b|I|ty matrix

\

5.1.SUBROUTINES

Map preparation work (A1)

Frame pre-pass and pass (A2)

Map Graphics API started...
information +
fed...

Retrieve map data
— (textures, samplers,
geometry)

\J
Build a bottom level
acceleration structure for the
map only

[
Move on to per-frame operations...

|
Per-frame data
from game
server...

Having moved on to
per-frame operations...

—

Retrieve per-frame data j

Build a top level
acceleration
structure with map
and per-frame data

to retrieve
stretch-bounds
and
look-ahead
Yes—| corners for all
players

l Run pre-pass

lagging player
present?

!

Build a top
level

N acceleration

structure for
lagging

players only

Game
uses simple
pipeline?

v
Run simple Run
algorithm path-traced
with algorithm
bounding with
boxes armatures
(AAL) (AB1)

[)

[
Prepare and feed the
visibility matrix back
to the game server...

v

5.1.1. SMPLEALGORITHM

Please note that subroutineAA11lis common with the next section and will be provided further
below.

