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Figure 1: (From left to right) Sibenik, Sponza and Fireplace scenes rendered with a single glossy bounce off of a gather buffer
using our technique. Sibenik and Sponza featured three animated teapots while Fireplace featured one. All scenes were ren-
dered at a resolution of 1920x1080. We have achieved average frame costs ranging from 15 to 23 milliseconds on the above
scenes on an AMD Radeon VII. Environments provided by the McGuire Computer Graphics Archive[McGuire 2017].

ABSTRACT
With the commercial availability of NVIDIA Co.’s RTX line of video
cards capable of hardware accelerated ray tracing, a resurgence of
interest surrounding ray tracing has appeared in the games industry.
The caveat of NVIDIA’s solution being tied to NVIDIA hardware
has prompted some efforts of replication in video cards lacking any
explicit hardware ray tracing acceleration. A notable attempt is that
of CryTek GmbH in their Neon Noir demo. However, their solution
as of this writing is only briefly discussed publicly and relies on
geometry proxies. Our approach aims to provide a comprehensive
solution that avoids reliance on lower resolution replicas.
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1 INTRODUCTION
Since the introduction of ray tracing for computer graphics by
[Whitted 1980] researchers have been investigating various ap-
proaches for fast scene traversal. One of the earliest methods pro-
posed was uniform grids by [Fujimoto et al. 1986]. Given its imprac-
ticality for large sparsely-populated environments, it has resulted
in several refinements such as Two-Level Grids [Kalojanov et al.
2011] and Irregular Girds [Pérard-Gayot et al. 2017]. However, its
simplicity may have contributed to its adoption by CryTek GmbH
in their Neon Noir showcase – described in [Vladimir Kajalin 2019]
– demonstrating highly interactive ray-tracing on modern GPUs
lacking ray-tracing hardware. Inspired by Neon Noir we present
this technique as a complete Vulkan implementation and address
CryTek’s reliance on geometry proxies which we find to be cum-
bersome or infeasible in scenarios such as procedural destruction.

2 ALGORITHM OVERVIEW
Our algorithm is straightforward and consists of three components:
scene build, scene update and scene trace. The scene build phase
constructs the grid for all static components of the scene and hap-
pens mostly once. It may be repeated in the event of a major update
to the static scene. The scene update phase clears all references to
dynamic scene components from the grid and re-adds them to ac-
count for motion. The scene trace step proceeds after scene update
and produces the traced imagery.

2.1 Scene Build
We commence by creating a Vulkan 3D image representing a grid
covering the entire scene with every texel being a potential trian-
gle reference. The ’x’ dimension is stretched to contain a scene-
dependent maximum number of triangle references per cell. The
grid granularity and the cell capacity are currently chosen manually.
The image has the single channel 32 bit unsigned integer format
to enable atomic operations. The lower 16 bits of every reference
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index a triangle within a geometry Shader Storage Buffer Object
(SSBO) while the higher 16 bits index an instance within a vari-
able count descriptor set. A value of 0xFFFFFFFF indicates a blank
reference. The build phase is a raster pass and in addition to its
common vertex stage transformations, every vertex’s instance ID
(gl_InstanceIndex) and triangle ID (gl_VertexIndex/3) are passed
down as well with a flat qualifier. The flat qualifier ensures correct-
ness of values further in the pipeline and reduces pressure on hard-
ware interpolators. Grid building happens inside geometry shader
invocations enabling wider integration with our implementation of
[Crassin and Green 2012] while presenting a familiar rasterization
interface to the operation. The practitioner may opt to use compute
shaders for performance considerations. The transformed triangle
is written into its corresponding geometry SSBO and subsequently
all cells overlapping its AABB are tested for overlap with its plane
using slightly enlarged cell bounding spheres. This enlargement
helps with our non-watertight trace loop later. Plane intersecting
cells commence a search to write the triangle’s reference ID us-
ing imageAtomicCompSwap() into an empty cell. An additional
reserved texel can be used to flag saturated cells though this would
not reduce intersection cost during trace as we iterate through all
non-blank references.

2.2 Scene Update
Scene updates start off by launching a compute shader that clears
dynamic primitive references from cells. This is achieved by pro-
viding a ’comparison offset’ – which is the total number of static
geometry instances shifted to the left by 16 bits – to the shader and
every reference higher or equal to this in integer value is blanked
using imageAtomicExchange(). We use a small Uniform Buffer Ob-
ject (UBO) to supply this to the shader though a push constant may
be more performant. The clear loop is terminated when encounter-
ing the first blank value. We ultimately determined a workgroup
size of 4x4x4 as optimal for this compute shader. Once dynamic
primitives are cleared, a procedure nearly identical to the build step
is launched with two exceptions: a) it targets the same 3D image
created during the build step and b) every reference’s instance ID
is increased by the number of static instances. In some cases it may
be preferred to only clear certain references from the grid (e.g. only
objects that have moved or changed) and re-submit those alone for
update. We are considering this as future improvement.

2.3 Scene Trace
We initiate our ray tracing by casting a ray segment the size of a
cell edge bounced off of a gather buffer. Visited cells are tracked
to prevent potential revisits. Majority of our ray advancements
result from single blank reference reads as most scenes are sparsely
populated. Since our trace steps are not watertight we avoid gen-
erating hierarchies of occupancy and larger steps. Variable count
descriptor sets representing transformed instance geometry and
instance materials are attached alongside instance property SSBOs
for static and dynamic instances. Both variable count descriptor sets
are collations of dynamic atop static variable count descriptor sets.
All primitives in an occupied cell are tested against an elongated
version of the ray segment using [Möller and Trumbore 2005]. The
instance ID of a successful hit is extracted and its instance properties

are checked for the alpha keying flag. If this flag is enabled, a diffuse
map sample fetch is performed to determine whether the hit should
be ignored. Our choice for computing barycentric coordinates is
Cramer’s Rule detailed in [Ericson 2004]. If a hit is not ignored
it counts towards minimizing the current intersection time. An
intersection time below 1.0 reports a closest hit. If the cell queried
happens to be saturated and no intersections were reported, a false
intersection is reported at the halfway point of the ray segment
using the last encountered primitive. This is our gap-filling tech-
nique intended to fill holes with textured voxels. This procedure
does not kick in unless the ray segment has travelled far enough to
avoid intersecting the voxels covering the current surface. This is
determined via projecting the current ray segment onto the normal
of the surface it was launched from. Various primitive spillover
schemes were tried to avoid gap-filling. However, the performance
penalties appeared unacceptable.

3 RESULTS AND CONCLUSION
We have presented a comprehensive ray tracing solution, hybrid
ray/voxel-tracing fixed capacity grids inspired by CryTek’s Neon
Noir ray tracing demo. This approach has achieved highly inter-
active frame rates on AMD Radeon VII ranging from 15 to 23 mil-
liseconds while avenues of improvement have been considered for
all components involved. Our technique can serve as a foundation
for ray-tracing on capable GPUs without hardware ray-tracing
support.
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