
HOW TO GO MARIE KONDO ON THE VRAM

BY BAKTASH ABDOLLAH-SHAMSHIR-SAZ

FROM BITSTREAMS TO
BUNNIES:

THE MOST IMPORTANT RULE

• Marie Kondo is well known for this most simple rule:

does it spark joy?

• This actually applies to memory optimization on the GPU.

• How to read this if you’re designing data streams:

• Do you need this (bit) to achieve the desired effect (joy)?

• Or could this be inferred from the surrounding environment?

• Memory reads are expensive.

• So let’s only keep things that spark joy. We can infer the rest.

CHALLENGE #1

• ShaderToy is a great platform for visualizing

analytical expressions (implicit surfaces, analytical

bilinear patches etc.)

 https://www.shadertoy.com/view/3tjczm

by Inigo Quilez

https://www.shadertoy.com/view/Xds3

zN

by Inigo Quilez

https://www.shadertoy.com/view/3tjczm
https://www.shadertoy.com/view/Xds3zN
https://www.shadertoy.com/view/Xds3zN

CHALLENGE #1

• However, you cannot bring in external images

• You’re limited to a pre-selected group of images

https://emojipedia.org/pensive-face/

CHALLENGE #1

• If you try to bring in contraband data via large

arrays:

• Generally, you should be able to go as large as 4096 array

elements.

• However, some compilers – specifically nVidia OpenGL

backends for ANGLE on Linux/Android/macOS – will
explode as they erroneously allot 4x the amount of

memory/registers necessary for accessing said data.

• Thus, reducing your cross-platform capacity to 1024 array

elements.

EXAMPLE #1

• Say we want to encode the following RGBA8

image:

• Do we need all 32 bits to represents this?

• Could we just keep RGB8 and color key the rest with black?

• Could we go further and crunch down RGB8 to R2G4B2
and spend 1 byte per pixel along with the color key?

• Yes and yes!

• And the color representation won’t be

nearly as bad as it will be uniformly

applied

EXAMPLE #1

(We get the image we want in-
shader working for all platforms!)

https://www.shadertoy.com/view/

tltGWf

(By yours truly)

Necessary util (will not exist everywhere):

https://www.shadertoy.com/view/tltGWf
https://www.shadertoy.com/view/tltGWf
https://www.shadertoy.com/view/tltGWf

EXAMPLE #1

• How to use?

• Read entire unsigned int containing the byte we’re
interested in

• Expand the byte into 3 component color

EXAMPLE #2

• Replicating old school Angels cracktro (Shadow of

the Beast II on the Amiga)

EXAMPLE #2

• If we quantize the colors to R2G4B2 we lose the

fidelity on the grayscale metallic texture

• Can we keep that and make an exception about

the blue?

• Thus staying in 1Bpp and maintain fidelity?

EXAMPLE #2

• Encode 1Bpp grayscale but keep the blue part a

constant low luminance

• Luminance scaled x4

EXAMPLE #2

• If we check center luminance…

• … and it’s the (low) magic number…

• … and all neighbors also have the magic number…

• … we can infer that it’s blue!

EXAMPLE #2

We have sparked joy!
(by inferring from circumstantial information)

https://www.shadertoy.c

om/view/WljSR1

(By yours truly)

https://www.shadertoy.com/view/WljSR1
https://www.shadertoy.com/view/WljSR1

EXAMPLE #3

• Can we replicate the Psygnosis owl? (R.I.P Ian

Hetherington)

EXAMPLE #3

• Our options:

• In-shader SVG renderer:

• Will be slow

• Will use a lot of floats and registers

• Leverage what we have:

• 1 Byte per pixel

• Is this really necessary?

• Can we do better? The owl can be just a black and white

stencil:

EXAMPLE #3

• We can do literally 1 bit per pixel:

• And also maintain a rather high resolution

EXAMPLE #3

• Apply 3x3 AA when sampling

• Add colors and patterns strategically

• And voila!

EXAMPLE #3

• End result:

https://www.shad

ertoy.com/view/3l

BSzK

(By yours truly)

 • Homage to this scene

from Shadow of the
Beast I

https://www.shadertoy.com/view/3lBSzK
https://www.shadertoy.com/view/3lBSzK
https://www.shadertoy.com/view/3lBSzK

EXAMPLE #3

• Stencil decode is much simpler

• Just 1 bit we’re interested in

• Image reconstruction is much more involved:

CHALLENGE #2

• What about geometry?

• Example:

• The Stanford bunny

• Used by Sebastien Hillaire to demonstrate improved delta-

tracking integral (https://www.shadertoy.com/view/MdlyDs)

• Coarse around the
ears:

• Can we do better?

https://www.shadertoy.com/view/MdlyDs

CHALLENGE #2

• Yes, we can!

• Encode entire geometry as
a Sparse Voxel Octree

• Waste no bits on empty top
and mid-level bricks

• You can trace this, live!

• We packed the bunny
and had room for 2
more!

• https://www.shadertoy.com
/view/dlBGRc

(By yours truly)

https://www.shadertoy.com/view/dlBGRc
https://www.shadertoy.com/view/dlBGRc

CHALLENGE #2

• For this we actually need a bitstream reader:

CHALLENGE #2

• Live trace via hole-skipping ray-box (slab)

intersection tests:

CHALLENGE #2

• Read octree nodes only if they’re occupied (i.e.

encountered a set bit).

• Otherwise, skip the size of the level you’re at (top or mid-

level brick):

CHALLENGE #2

• Does this work at scale?
• Turns out: no (lol!)

• First attempt by yours truly to combine with SDFs
• Too slow

• Pros:
• Smooth corners

• Cons:
• Too many reads

(3x3x3 fetches to
construct a local
rounded box SDF)

• All value in
hole-skipping gone

CHALLENGE #2

• Code available on Shadertoy-utils (by yours truly):

• https://github.com/toomuchvoltage/shadertoy-utils

• Below code executed 3x3x3 times! (Oof…)

https://github.com/toomuchvoltage/shadertoy-utils
https://github.com/toomuchvoltage/shadertoy-utils
https://github.com/toomuchvoltage/shadertoy-utils

CHALLENGE #2

• Second attempt:

• Encode the entire bunny as a distance field

• Three step approach:

1. Expand SVO into tiles in a sub-region of a floating

point target

2. Generate distance field via JFA

• Keep going until offsetPower is -1.0

3. Compact SDF output to use as little memory as

possible

• 40x40x40 bunny only needs a (40, 40*3) RGBA32F sub-image

CHALLENGE #2

• Bingo!

• Even runs on my phone: S22 Ultra

• https://www.shadertoy.com/vie

w/cs3GRH

(By yours truly)

https://www.shadertoy.com/view/cs3GRH
https://www.shadertoy.com/view/cs3GRH

CHALLENGE #2

• Honorable mention:

• RLE encoded

Stanford dragon by

Anton Schreiner

• https://www.shadertoy.

com/view/tlSSWD

• There is no option to

live-trace here though!

(would be too slow)

• Expanded version
would not hole-skip
either.

https://www.shadertoy.com/view/tlSSWD
https://www.shadertoy.com/view/tlSSWD

CHALLENGE #2

• Have we seen this sort
of runtime expansion
before?

• Yes: .kkrieger by
.theprodukkt

• Entire video game in
<100KB

• All geometry is CSG

• All textures are encoded as
successive brush strokes

• Expanded into VRAM at
runtime

CHALLENGE #2

• NOTE: if you want to ship

materials with the bunny,

encode as swatch bits

following the leaf brick bits

• We can access them as we

encounter intersections

• Another rule by Marie Kondo:

• Store items based on frequency

of use!

• In GPU optimization this is spatial
locality for spatially coherent

access

• Results in less cache thrashing

CHALLENGE #3

• What about

games? Can this

help our title?

• Yes!

• Encode instance

properties in your

instance property

buffers (UAVs/SSBOs)

as bits in a bitfield

CHALLENGE #3

• Decode inside shader

CHALLENGE #3

• What else?
• We can pack and unpack data into vertices so as to push

more geometry

• We can store normal as sign of Z, X and Y and infer via sqrt

CHALLENGE #3

• Try hard enough

and you should

hit 16 bytes per

vertex! ;)

• https://twitter.co

m/SebAaltonen/s
tatus/1515735247

928930311

https://twitter.com/SebAaltonen/status/1515735247928930311
https://twitter.com/SebAaltonen/status/1515735247928930311
https://twitter.com/SebAaltonen/status/1515735247928930311
https://twitter.com/SebAaltonen/status/1515735247928930311

CHALLENGE #3

• Vertex positions in Ryse: Son of Rome were

compressed to represent a fraction of the mesh

AABB:

• Presentation missing from the web
• But instructions on how to do this in CryEngine is available

here:
https://docs.cryengine.com/display/CEMANUAL/Geom+Cac
he+Technical+Overview

• Entire tangent space was also encoded as a quaternion with
some additional info. See q-tangent:
https://dl.acm.org/doi/abs/10.1145/2037826.2037841

https://docs.cryengine.com/display/CEMANUAL/Geom+Cache+Technical+Overview
https://docs.cryengine.com/display/CEMANUAL/Geom+Cache+Technical+Overview
https://dl.acm.org/doi/abs/10.1145/2037826.2037841

CHALLENGE #3

• Even more compact tangent space representation:

• https://www.jeremyong.com/graphics/2023/01/09/tangent-
spaces-and-diamond-encoding/

https://www.jeremyong.com/graphics/2023/01/09/tangent-spaces-and-diamond-encoding/
https://www.jeremyong.com/graphics/2023/01/09/tangent-spaces-and-diamond-encoding/
https://www.jeremyong.com/graphics/2023/01/09/tangent-spaces-and-diamond-encoding/
https://www.jeremyong.com/graphics/2023/01/09/tangent-spaces-and-diamond-encoding/
https://www.jeremyong.com/graphics/2023/01/09/tangent-spaces-and-diamond-encoding/
https://www.jeremyong.com/graphics/2023/01/09/tangent-spaces-and-diamond-encoding/
https://www.jeremyong.com/graphics/2023/01/09/tangent-spaces-and-diamond-encoding/
https://www.jeremyong.com/graphics/2023/01/09/tangent-spaces-and-diamond-encoding/
https://www.jeremyong.com/graphics/2023/01/09/tangent-spaces-and-diamond-encoding/

CHALLENGE #3

• This is efficient in path-tracing too!

• Ylitie2017 not only encodes vertex positions as fractions of
leaf AABBs, but makes internal node AABBs fractions of

each other:

https://research.nv

idia.com/sites/def

ault/files/publicati

ons/ylitie2017hpg-

paper.pdf

https://research.nvidia.com/sites/default/files/publications/ylitie2017hpg-paper.pdf
https://research.nvidia.com/sites/default/files/publications/ylitie2017hpg-paper.pdf
https://research.nvidia.com/sites/default/files/publications/ylitie2017hpg-paper.pdf
https://research.nvidia.com/sites/default/files/publications/ylitie2017hpg-paper.pdf
https://research.nvidia.com/sites/default/files/publications/ylitie2017hpg-paper.pdf
https://research.nvidia.com/sites/default/files/publications/ylitie2017hpg-paper.pdf

CHALLENGE #3

• Every leaf node in Teardown uses an 8-bit index to

look into a color palette:

• Full tech talk here:

• https://www.youtube.com/watch?v=0VzE8ROwC58

• Many many ways to spark
joy!

https://www.youtube.com/watch?v=0VzE8ROwC58

CHALLENGE #3

• Even the hardware does this for you!

• BC1-7 block compression is all about storing color

endpoints and flattening colors as 1Bpp fractions on

the line that forms

• https://www.reedbeta.com/blog/understanding-

bcn-texture-compression-formats/

https://www.reedbeta.com/blog/understanding-bcn-texture-compression-formats/
https://www.reedbeta.com/blog/understanding-bcn-texture-compression-formats/
https://www.reedbeta.com/blog/understanding-bcn-texture-compression-formats/
https://www.reedbeta.com/blog/understanding-bcn-texture-compression-formats/
https://www.reedbeta.com/blog/understanding-bcn-texture-compression-formats/
https://www.reedbeta.com/blog/understanding-bcn-texture-compression-formats/
https://www.reedbeta.com/blog/understanding-bcn-texture-compression-formats/
https://www.reedbeta.com/blog/understanding-bcn-texture-compression-formats/
https://www.reedbeta.com/blog/understanding-bcn-texture-compression-formats/

THAT IS ALL!

Thank you for listening!

Feel free to reach out:

baktash@toomuchvoltage.com

@toomuchvoltage

mailto:baktash@toomuchvoltage.com
https://www.twitter.com/toomuchvoltage
https://www.twitter.com/toomuchvoltage

